
Ziggurat: A new data model and indexing format

for large annotated text corpora

Stefan Evert

Friedrich-Alexander-Universität

Erlangen-Nürnberg

stefan.evert@fau.de

Andrew Hardie

Lancaster University

a.hardie@lancaster.ac.uk

Abstract

The IMS Open Corpus Workbench

(CWB) software currently uses a simple

tabular data model with proven limita-

tions. We outline and justify the need for

a new data model to underlie the next

major version of CWB. This data model,

dubbed Ziggurat, defines a series of types

of data layer to represent different struc-

tures and relations within an annotated

corpus; each such layer may contain var-

iables of different types. Ziggurat will al-

low us to gradually extend and enhance

CWB’s existing CQP-syntax for corpus

queries, and also make possible more

radical departures relative not only to the

current version of CWB but also to other

contemporary corpus-analysis software.

1 Introduction

With recent technological advances, it has be-

come possible – and increasingly practical – to

compile huge corpora (of 10 billion tokens and

more) with complex linguistic annotation (token-

level annotation such as part-of-speech tags,

lemmatization, semantic tags; logical and typo-

graphical text markup encoded by XML tags;

phrase structure trees; syntactic dependency

graphs; coreference chains; …) and rich metada-

ta (at text, paragraph or speaker level). At the

same time, emerging international standards have

begun to account for such richly annotated cor-

pora – defining data models and serialization

formats, as in the Linguistic Annotation Frame-

work (LAF, ISO 24612: Ide & Suderman 2014);

as well as different levels of query languages for

complex linguistic annotations, as in the Corpus

Query Lingua Franca (CQLF, ISO/CD 24623-1).

Defined in a (currently draft) ISO standard, the

CQLF metamodel distinguishes three levels of

analysis, which correspond to linguistic annota-

tions of different complexity:

 Level 1: plain-text search and token-level

annotations

 Level 2: hierarchical structures and de-

pendency graphs

 Level 3: multiple concurrent annotations

The current generation of software tools for que-

rying large corpora – such as the IMS Open Cor-

pus Workbench (CWB: Evert & Hardie 2011),

Manatee/SketchEngine (Rychlý 2007) and

Poliqarp (Janus & Przepiórkowski 2007) – are

still based on a simple tabular data model that

corresponds to CQLF Level 1 and was developed

in the 1990s (Witten et al. 1999). This data mod-

el represents a text corpus as a sequence of to-

kens annotated with linguistic features coded as

string values. It is equivalent to a data table

where rows correspond to tokens and columns to

the different annotations – similar to a relational

database table, but with an inherent ordering of

the rows.

This tabular data model was applied to linguis-

tic corpus indexing by the first release of CWB

(Christ 1994). CWB also extended the basic text-

indexing structure outlined by authors such as

Witten et al., by adding special provisions for

simple structural annotation and sentence align-

ment. These were stored in the form of token

ranges (pairs of integer corpus positions). The

approach pioneered by the early versions of

CWB was later embraced by many other soft-

ware packages, including those cited above. The

current release of CWB and its Corpus Query

Processor (CQP), that is version 3, is widely

used, especially through the user-friendly,

browser-based CQPweb interface (Hardie 2012);

21

Published in: Bański, Piotr; Biber, Hanno; Breiteneder, Evelyn; Kupietz, Marc; Lüngen, Harald; Witt, Andreas (eds.) (2015): Proceedings
of the 3rd Workshop on Challenges in the Management of Large Corpora (CMLC-3). Mannheim: Institut für Deutsche Sprache, pp. 21-27

it still builds on the same data model and main-

tains full backwards compatibility. Though the

data model has no “official” name, we will refer

to it in this paper as the CWB3 data model. As

lead maintainers and developers of CWB – now

an open-source project – we have become in-

creasingly acutely aware of a number of limita-

tions in CWB’s basic design. In addition to its

simplistic data model, CWB3 is limited to corpo-

ra of at most 2.1 billion tokens, because it stores

token positions as signed 32-bit. This design de-

cision, while perhaps justifiable in the early

1990s, no longer makes real sense (as explained

in Evert & Hardie 2011).

A number of indexing and query tools do in

fact go beyond a data model parallel to CWB3,

and can thus support more complex linguistic

annotation. Examples include TIGERSearch,

(Lezius 2002), ANNIS (Zeldes et al. 2009), and

ICECUP (Quinn & Porter 1994). However, such

software is usually designed for small, manually

annotated data sets and fails to scale up to bil-

lion-word corpora harvested from the Web or

other sources. This tendency is well-exemplified

by ICECUP, which is distributed alongside the

corpora it is intended to be used with, namely

ICE-GB and the Diachronic Corpus of Present-

Day spoken English (DCPSE), densely-

annotated corpora on the order of one million

tokens in extent.

There is an urgent need, therefore, for efficient

corpus query tools that go beyond the limitations

of the CWB3 data model, providing compact

storage and efficient search over complex lin-

guistic structures. The work of the CWB devel-

opment team over the past two years has turned

to the development of a new data model that can

support complex annotation, and can do so at

scale.

2 Introducing Ziggurat

We present a novel data model, and associated

indexing format, which will underlie the next

major version of CWB (version 4). Rather than

refer to this as the “CWB4” model, we propose

the name Ziggurat for the data model, the file

format, and the database engine software that

implements them. The name is inspired by the

shape of the data model, which – as the remain-

der of this paper will illustrate – consists concep-

tually of a pile of rectangular layers on top of one

another.

The design goals of Ziggurat are that it should

(i) scale to corpora of arbitrary size; (ii) support

rich linguistic annotation, in particular XML hi-

erarchies, phrase-structure trees, dependency

graphs and parallel-corpus alignment; and (iii)

provide efficient indexed access to the data, ena-

bling complex linguistic queries in reasonable

time. In the long term, by defining the Ziggurat

engine as a conceptually-separate entity to the

CWB software and the query language that it

provides (known as CQP-syntax), our aim is to

be able to use Ziggurat as the underpinning for

more than one (kind of) query language. To-

wards the end of this paper, we will speculate on

the new types of query languages that the en-

riched data model supported by Ziggurat will

enable. Let us first, however, survey some relat-

ed work, justifying the need for a new database

engine.

3 Related work and motivation

In recent years, researchers have explored sever-

al alternative approaches to efficient queries for

large text corpora:

 A standard relational database with redun-

dant representation of the corpus (e.g. n-

gram tables), a large number of indexes

and fine-tuning of the database server and

SQL queries (as outlined by Davies 2005,

although Davies’ current architecture
1
 is

much-revised from this now somewhat

outdated outline). It is unclear whether this

approach can be generalized to more com-

plex linguistic data structures and sophis-

ticated query needs.

 A native XML or graph database used off-

the-shelf, with built-in indexing and query

facilities. Mayo et al. (2006) show that this

approach is inefficient using XML data-

bases; Proisl & Uhrig (2012) make the

same observation for a popular graph da-

tabase.

 An information retrieval or Web search

engine such as Lucene, with custom modi-

fications to support linguistic annotation

and the kinds of query patterns supported

by CQP-syntax. A recent example of this

approach is the BlackLab
2
 software. While

it is difficult to assess the potential of the

system due to a lack of scientific publica-

tions, a small number of blog posts about

its internals suggest that it may be very

1 Accessible at http://corpus.byu.edu
2 https://github.com/INL/BlackLab

22

difficult to extend BlackLab to full tree

structures and dependency graphs.

 Corpuscle (Meurer 2012) proposes new

indexing structures based on suffix trees in

order to optimise the performance of regu-

lar expressions and CQP-syntax queries.

Having a focus on indexing and query al-

gorithms, it does not attempt to go beyond

the tabular CWB3 data model.

Despite introducing various innovations, none of

these approaches has resorted to a ground-up

rethink of the data model: all attempt to extend

some existing data model. While such efforts

have had notable short-term successes, we be-

lieve that ultimately they are self-limiting, for the

reasons discussed above. We are convinced that

it is necessary to go beyond the CWB3 data

model; however, we are likewise convinced that

working around other standard data models,

whether those of XML databases or web-query

engines, is not the best way to do it, especially

for a community-driven effort with limited re-

sources. This motivates our proposal of Ziggurat.

Ziggurat does represent a ground-up rethink of

the CWB3 data model, keeping its basic idea – a

tabular data model with implicitly-ordered rows

representing sequence positions – but extending

it considerably, and like CWB3 using custom

index structures and file formats. We believe that

this offers better support for the highly success-

ful brute-force corpus search of CWB and simi-

lar query tools than a standard off-the-shelf

backend such as a SQL RDBMS or Web search

engine. Recognizing that it is better to have a

simple but flexible tool that is available, well-

maintained and actively developed by its user

community than to design the “Perl 6” of corpus

query engines – that is, a perfect redesign which

remains unreleased and unavailable to most users

for years on end – we resolved to keep the data

model, index structures and file formats as sim-

ple and straightforward as possible. Thus, the

entire Ziggurat data model builds on a small set

of easily implemented data structures.

Further key requirements for the new data

model are (i) full Unicode support, (ii)

(nigh-)unlimited corpus size, (iii) logical back-

ward compatibility with the CWB3 data model,

(iv) full support for hierarchical XML annotation

and other tree structures, (v) representation of

dependency graphs, (vi) support for sentence

(and preferably also word) alignment, and (vii)

concurrent annotation layers forming independ-

ent or intersecting hierarchies. The Ziggurat data

model thus encompasses all three levels of the

CQLF metamodel.

4 The data model

In order to ensure a compact representation, effi-

cient access and a simple implementation of the

data model, a number of limitations are accepted:

 Corpora are “horizontally” static, i.e. no

modification of the tokenization, annota-

tion units or annotated values is allowed in

an indexed corpus, and documents can

neither be added nor deleted. However,

corpora are “vertically” flexible, i.e. indi-

vidual annotated features or entire annota-

tion layers may be added and deleted.

 Individual physical corpora cannot be col-

lected into a single “virtual” corpus, but

queries can be restricted to subsets of a

large physical corpus without loss of effi-

ciency.

 The data format is token-based, without

support for full-text representation and

search.

In the proposed data model, a corpus is a collec-

tion of sequential data layers, which are con-

nected into one or more annotation hierarchies

over the primary text data. Each data layer con-

sists of a sequence of annotation units annotated

with one or more variables (i.e. linguistic fea-

tures). Thus, a data layer in Ziggurat fundamen-

tally has the same tabular format as the annotated

token sequence in a CWB3 corpus, and the es-

tablished representation and indexing approaches

for such data structures (similar to Witten et al.

1999) can be used. A key difference between

Ziggurat and CWB3 is that all Ziggurat data lay-

ers can be annotated with variables, not just the

primary token sequence. Moreover, unlike

CWB3, Ziggurat will support different types of

variables:

 Indexed strings = string values where all

distinct strings are collected in a lexicon

and associated with numeric IDs (equiva-

lent to CWB3 token-level annotations)

 Raw strings = string values stored without

indexing, mainly used for free-form

metadata (such as URLs) or unique IDs

 Integers = signed 64-bit integer values

(which can also be interpreted by client

software as fixed-point decimals), used for

storing numeric information

23

 Pointers = references to a single parent

annotation unit in the same layer, which

can be used to structure the sequence of

annotation units into a forest of unordered

trees (e.g. a simple dependency parse

without multiple parents); these will be

stored as integers, and thus the maximum

corpus size will be the positive limit of a

64-bit signed integer (somewhat over 9.2

quintillion)

 Hashes = indexed key-value stores with a

lexicon similar to indexed strings, useful

for storing variable metadata and the at-

tributes of XML start tags.

Structural information is conveyed by the way in

which different data layers are connected. In a

Ziggurat index, a basic token sequence together

with all token-level annotations forms the so-

called primary annotation layer. All other types

of data layers reference one or more base layers.

These layers can in turn act as base layers of fur-

ther data layers, forming a hierarchy of annota-

tion layers. (This is the source of the name Zig-

gurat: the multiple rectangular data layers that

are built on top of one another may be visualized

in a shape reminiscent of a Mesopotamian ziggu-

rat.)

Annotations are fully concurrent, allowing

multiple independent or intersecting annotation

hierarchies over the primary layer. In principle, a

corpus may also contain multiple primary layers,

e.g. representing different transcriptions of the

same audio signal.

Ziggurat will have the following types of data

layers (see appendix for an illustration):

 Segmentation layer: Each unit represents

an uninterrupted range of base layer units

(usually the tokens of a primary layer).

Different ranges may neither overlap nor

be nested within each other. This layer

type extends the structural attributes used

to represent multi-token structures in the

CWB3 data model, but more flexibly;

these layers are useful for storing a simple

segmentation of the corpus (into sentenc-

es, texts, files, speaker turns, …) and the

associated metadata.

 Tree layer: Each unit also represents an

uninterrupted range of base layer units, but

these ranges may be nested hierarchically,

forming an ordered tree over the base lay-

er sequence. An important application of

tree layers is to represent XML annotation,

with each annotation unit corresponding to

one XML element. Empty ranges are ex-

pressly allowed by the data model for this

purpose. Tree layers can also, however,

represent the tree structures of constituen-

cy-parsing.

 Graph layer: Each unit represents a di-

rected edge between two annotation units

in the base layer, thus forming a directed

graph over the base layer, where both edg-

es (in the tree layer) and nodes (in the base

layer) may be annotated with variables.

Unlike other layers, graph layers may have

two different base layers for the tails and

heads of the edges. A graph between two

different base layers represents an align-

ment of the base layers: a sentence align-

ment if they are sentence segmentation

layers, or a word alignment if they are

primary layers. This type of layer thus

supports both dependency-parsing annota-

tion (with a single base layer) and parallel-

corpus alignment (with two base layers:

the equivalent of a CWB3 alignment-

attribute).

Ziggurat data structures are designed to be as

simple and uniform as possible. The only value

types are strings in UTF-8 encoding and signed

64-bit integers. Indexing is based on two simple

generic structures: a sort index with integer sort

keys, and a postings list similar to that used by

Web search engines. The Ziggurat file formats

are also simplified relative to CWB3, trading off

compactness for simplicity and decompression

speed. CWB3 uses bit-oriented Huffman and

Golomb coding schemes, as proposed by Witten

et al. (1999). However, through experiments us-

ing CQP we have found that these compression

methods, though maximally economical of disk

space, require an excessive amount of processor

time when the system is running complex que-

ries. Ziggurat instead utilizes variable-length

byte encodings (without a codebook) and delta

compression. A Ziggurat-encoded corpus will

therefore take up more disk space, but will re-

quire less CPU time to decompress.

5 New corpus query approaches

The Ziggurat data model’s greater expressive-

ness relative to CWB3 will allow, and therefore

ultimately call for, more sophisticated query lan-

guages than CWB3 could support. While a con-

crete specification is not possible at this time, we

24

believe that the following three approaches are

promising.

Approach 1 extends the CWB3-style “linear”

queries based on regular expression notation, i.e.

the kind of query language typified by CQP-

syntax. It allows query paths to follow other axes

than the token sequence (similar to XPath), in

particular along the edges of a graph layer and to

parents, children and siblings in a tree layer. Ex-

perience from Treebank.info (Proisl & Uhrig

2012) suggests that many linguistically plausible

searches can be flattened into a single linear

path; otherwise “branching” queries will be

needed. This approach will be implemented in

version 4 of CWB – the first application using

Ziggurat. CWB version 4 will at first simply im-

plement the existing CQP-syntax in terms of

calls to the Ziggurat engine; but subsequently it

will gradually extend the CQP-syntax query lan-

guage over time to exploit more of the af-

fordances of Ziggurat.

In Approach 2, a query specifies a finite set of

anchor points (tokens or annotation units from a

specified data layer), constraints on annotated

variables, and relations between different an-

chors (such as co-occurrence, dominance or

precedence). Similar to XQuery, this approach is

used by many existing query engines for CQLF

levels 2 and 3, including TIGERSearch, ANNIS

(Krause & Zeldes in press) and the NXT Query

Language (Evert & Voormann 2003).

Approach 3 derives from the following obser-

vation by Geoffrey Sampson:

[…] there are usually two possibilities when one

wants to exploit corpus data. Often, one wants to

put very obvious and simple questions to the

corpus; in that case, it is usually possible to get

answers via general-purpose Unix commands

like grep and wc, avoiding the overhead of

learning special-purpose software. Sometimes,

the questions one wants to put are original and

un-obvious; in those cases, the developer of a

corpus utility is unlikely to have anticipated that

anyone might want to ask them, so one has to

write one's own program to extract the infor-

mation. (Sampson 1998:365; our emphasis).

The most sophisticated corpus query require-

ments can only be satisfied by a Turing-complete

query language. We therefore envisage corpus

queries as programs for a virtual machine (VM)

that interfaces closely with the corpus data model

and index structures. High-level languages (such

as JavaScript, Python or Lua) or parser genera-

tors can then be used to implement various sim-

plified query languages with relative ease, com-

piling the queries written in these query lan-

guages into VM programs. This approach, then,

ultimately will enable “power users” – those with

an understanding of the data model and some

coding ability – to write their own programs to

carry out virtually every imaginable search.

By making the Ziggurat data model and data-

base engine extremely flexible in the ways out-

lined above, we will establish a foundation on

which any or all of these three approaches can be

developed, within the same or different pieces of

software.

References

Christ, Oliver (1994). A modular and flexible archi-

tecture for an integrated corpus query system. In

Papers in Computational Lexicography (COM-

PLEX '94), pages 22–32, Budapest, Hungary.

Davies, Mark (2005). The advantage of using rela-

tional databases for large corpora: Speed, advanced

queries and unlimited annotation. International

Journal of Corpus Linguistics, 10(3), 307–334.

Evert, Stefan and Hardie, Andrew (2011). Twenty-

first century corpus workbench: Updating a query

architecture for the new millennium. In Proceed-

ings of the Corpus Linguistics 2011 Conference,

Birmingham, UK.

Evert, Stefan and Voormann, Holger (2003). NQL – a

query language for multi-modal language data.

Technical report, IMS, University of Stuttgart.

Version 2.1.

Hardie, Andrew (2012). CQPweb – combining power,

flexibility and usability in a corpus analysis tool.

International Journal of Corpus Linguistics, 17(3),

380–409.

Ide, Nancy and Suderman, Keith (2014). The linguis-

tic annotation framework: a standard for annotation

interchange and merging. Language Resources and

Evaluation, 48(3), 395–418.

ISO 24612 (2012) Language resource management –

linguistic annotation framework. Technical report,

ISO.

ISO/CD 24623-1 (2014). Language resource man-

agement – corpus query lingua franca (CQLF) –

part 1: Metamodel. Technical report, ISO.

Janus, Daniel and Przepiórkowski, Adam (2007).

Poliqarp: An open source corpus indexer and

search engine with syntactic extensions. In Pro-

ceedings of the 45th Annual Meeting of the Associ-

ation for Computational Linguistics, Posters and

Demonstrations Sessions, pages 85–88, Prague,

Czech Republic. Association for Computational

Linguistics.

25

Krause, Thomas and Zeldes, Amir (in press). AN-

NIS3: A new architecture for generic corpus query

and visualization. Digital Scholarship in the Hu-

manities. Advance access.

Lezius, Wolfgang (2002). TIGERSearch – ein

Suchwerkzeug für Baumbanken. In S. Busemann

(ed.), Proceedings der 6. Konferenz zur Verarbei-

tung natürlicher Sprache (KONVENS 2002), Saar-

brücken, Germany.

Mayo, Neil; Kilgour, Jonathan; Carletta, Jean (2006).

Towards an alternative implementation of NXT's

query language via XQuery. In Proceedings of the

5th Workshop on NLP and XML (NLPXML-2006),

pages 27–34, Trento, Italy.

Meurer, Paul (2012). Corpuscle – a new corpus man-

agement platform for annotated corpora. In Exlor-

ing Newspaper Language: Using the web to create

and investigate a large corpus of modern Norwe-

gian, number 49 in Studies in Corpus Linguistics.

John Benjamins.

Proisl, Thomas and Uhrig, Peter (2012). Efficient

dependency graph matching with the IMS open

corpus workbench. In Proceedings of the Eight In-

ternational Conference on Language Resources

and Evaluation (LREC '12), Istanbul, Turkey. Eu-

ropean Language Resources Association (ELRA).

Quinn, Akiva and Porter, Nick (1994). Investigating

English usage with ICECUP. English Today, 10(3),

19–24.

Rychlý, Pavel (2007). Manatee/Bonito - a modular

corpus manager. In Proceedings of the 1st Work-

shop on Recent Advances in Slavonic Natural Lan-

guage Processing, pages 65–70, Brno. Masaryk

University.

Sampson, Geoffrey (1998). Review of Sidney Green-

baum (ed.), Comparing English worldwide: The in-

ternational corpus of English. Oxford: Clarendon

Press, 1996. ISBN 0-19-823582-8, xvi+286 pages.

Natural Language Engineering, 4, 363–382.

Witten, Ian H.; Moffat, Alistair; Bell, Timothy C.

(1999). Managing Gigabytes. Morgan Kaufmann

Publishing, San Francisco, 2nd edition.

Zeldes, Amir; Ritz, Julia; Lüdeling, Anke; Chiarcos,

Christian (2009). ANNIS: A search tool for multi-

layer annotated corpora. In M. Mahlberg, V. Gon-

zález-Díaz, and C. Smith (eds.), Proceedings of the

Corpus Linguistics 2009 Conference, Liverpool,

UK. Article #358.

Appendix: Illustrations of different Ziggurat layer types

Fig 1. Illustration of different types of Ziggurat variables on a primary layer.

(Note that the simple tree structures defined by the pointer variable in the last column are less general

than the graph layer in Fig. 2 and edges cannot be annotated with labels)

26

Fig 2. A graph layer (representing a dependency parse) and its base layer

Fig 3. A tree layer (representing an XML hierarchy) and its base layer

27

