
C
W

B
T
h

e
 I

M
S

 O
p

e
n

 C
o
rp

u
s

W
o
rk

b
e
n

c
h

Inside the
IMS Corpus Workbench

http://cwb.sf.net/

Stefan Evert

Institute of Cognitive Science

University of Osnabrück

stefan.evert@uos.de | purl.org/stefan.evert

C
Talk overview

History of the IMS Corpus Workbench (CWB)

The CWB data model

Recently added CQP features

The CWB architecture (CL, CQP, CWB/Perl, CQi)

Corpus indexing in the CWB

Inside CQP

Critical evaluation & Plans for future development

2

3

History

C
Flashback to the early 1990s

4

The need for a corpus workbench

Rising interest in corpus-based and statistical approaches

! part-of-speech tagging with HMM (Church 1988)

! computational lexicography & collocation extraction
(Sinclair et al. 1970/2004; Church & Hanks 1990)

! statistical machine translation (Brown et al. 1990, 1993)

! special issue on Using Large Corpora (J of Comp Ling, 1993)

Main resource: large text corpora with shallow annotation

! collect > 100 M words (e.g. British National Corpus)

! usually with part-of-speech tagging & lemmatisation

! textual structure: sentences, paragraphs, documents + metadata

C
Flashback to the early 1990s

5

The need for a corpus workbench

Standard format: ASCII/Latin-1 text with inline annotation

! one sentence per line, with inline POS tags

! one word per line, with annotations in TAB-separated fields

! well-suited for statistical exploitation, as training data, etc.

Interactive use: linguists, lexicographers, terminologists, …

! need for more interactive corpus search & processing

! concordance & collocation analysis for specified word

! frequency lists for keyword/terminology identification

! search for complex linguistic patterns (based on POS tags)

Requires special database engine for text corpora

! e"cient indexing of large text corpora with linguistic annotation

! allow non-technical users to write complex search patterns

C
1993–2008 — the o"cial timeline

History of the IMS Corpus Workbench

1993-1996: Project on Text Corpora & Exploration Tools

! IMS Stuttgart, financed by the state of Baden-Württemberg

! TreeTagger by Helmut Schmid (Schmid 1994, 1995)

! Corpus Workbench by Oliver Christ (Christ 1994)

1994–1998: EAGLES & DECIDE projects

! additional funding for TreeTagger and STTS tagset (EAGLES)

! application in computational lexicography (DECIDE)

! Xkwic & macro processor MP (Christ & Schulze 1996)

1996: First stable public release of CWB (v2.2)

! non-commercial use only, binary packages for SUN Solaris

! experimental (i.e. buggy) Linux version

6

C
1993–2008 — the o"cial timeline

History of the IMS Corpus Workbench

1998-2004: In-house development continues

! sporadic funding from various projects & other sources

! beta versions of CWB 2.3/3.0 available since 2001

! binary packages for SUN Solaris (SPARC) & Linux (i386)

2000: First "clones" of the CWB appear

! Manatee (ca. 2000, open-source in late 2005)

! Poliqarp (ca. 2007)

2005: CWB becomes open-source software

! new "o"cial" name: IMS Open Corpus Workbench

2008: O"cial release of OCWB version 3.0 (hopefully!)

7

C
The true history of the CWB

1993-1995: Development of indexing library & CQP

1996: Poor design choices (Xkwic & MP)

1997: Everybody leaves

1998: New maintainers (Stefan Evert, Arne Fitschen)

1998-2000: Bug fixes & support for in-house users

! first "bug fix": discontinue Xkwic & MP development

! improved Linux support (later main development platform)

2000-2003: Incremental addition of new features

! driven by requirements of IMS users and some other groups

! frequently updated beta releases (2.2.b17-2.2.b98)

2005-2008: Preparation of open-source release (OCWB 3.0)
8

9

Data Model

C

10

A typical text corpus

A fine example. Very fine examples!

<text id="42" lang="English">

<s>

 A/DET/a fine/ADJ/fine example/NN/example ./PUN/.

</s>

<s>

 Very/ADV/very fine/ADJ/fine examples/NN/example !/PUN/!

</s>

</text>

C
as used by relational databases, tables of statistical observations, …

Representation in tabular format

#! word! ! pos! ! lemma

0# A# # DET# # a

1# fine# # ADJ# # fine

2# example# # NN# # example

3# .# # PUN# # .

4# Very# # ADV# # very

5# fine# # ADJ# # fine

6# examples# # NN# # example

7# !# # PUN# # !

corpus position ("cpos")

11

C
Special representation of XML tags

Representation in tabular format

#! word! ! pos! ! lemma

(0)# <text id="42" lang="English">

(0)# <s>

0# A# # DET# # a

1# fine# # ADJ# # fine

2# example# # NN# # example

3# .# # PUN# # .

(3)# </s>

(4)# <s>

4# Very# # ADV# # very

5# fine# # ADJ# # fine

6# examples# # NN# # example

7# !# # PUN# # !

(7)# </s>

(7)# </text>

12

XML tags inserted
as "invisible" tokens

C
Special representation of XML tags

Representation in tabular format

#! word! ! pos! ! lemma

(0)# <text id="42" lang="English">

(0)# <s>

0# A# # DET# # a

1# fine# # ADJ# # fine

2# example# # NN# # example

3# .# # PUN# # .

(3)# </s>

(4)# <s>

4# Very# # ADV# # very

5# fine# # ADJ# # fine

6# examples# # NN# # example

7# !# # PUN# # !

(7)# </s>

(7)# </text>

13

XML regions
represented
internally as
ranges of
tokens, i.e.
start/end #

id
=

"4
2

"
la

n
g

=
"E

n
g

li
s
h
"

s-attributes

p-attributes

C
Lexicon of annotation strings for each table column (p-attribute)

Representation in tabular format

#! word! ! pos! ! lemma

(0)# <text id="42" lang="English">

(0)# <s>

0# A# 0# DET# 0# a# 0

1# fine# 1# ADJ# 1# fine# 1

2# example# 2# NN# 2# example# 2

3# .# 3# PUN# 3# .# 3

(3)# </s>

(4)# <s>

4# Very# 4# ADV# 4# very# 4

5# fine# 1# ADJ# 1# fine# 1

6# examples# 5# NN# 2# example# 2

7# !# 6# PUN# 3# !# 5

(7)# </s>

(7)# </text>

14

lexicon IDs for
annotation strings

(per column)

15

New CQP Features

C

16

The matching strategy of CQP queries

Pattern: DET? ADJ* NN (PREP DET? ADJ* NN)*

 the old book on the table in the room

C

17

The matching strategy of CQP queries

Pattern: DET? ADJ* NN (PREP DET? ADJ* NN)*

 the old book on the table in the room

the# old# book

old# book

book

the# table

table

the# room

room

"traditional"
strategy

This is useful for
the extraction of

cooccurrence data, e.g.

[pos="ADJ"] []{0,5}
 [pos="NN"]

> set MatchingStrategy "traditional";

Pattern: DET? ADJ* NN (PREP DET? ADJ* NN)*

 the old book on the table in the room

the# old# book

the# table

the# room

new standard
strategy

C

18

The matching strategy of CQP queries

Pattern: DET? ADJ* NN (PREP DET? ADJ* NN)*

 the old book on the table in the room

book

table

room

shortest match
strategy

C

19

The matching strategy of CQP queries

> set MatchingStrategy "shortest";

Pattern: DET? ADJ* NN (PREP DET? ADJ* NN)*

 the old book on the table in the room

the# old# book# on# the# table# in# the# room

longest match
strategy

C

20

The matching strategy of CQP queries

> set MatchingStrategy "longest";

C
Label references & anchors

CQP v2.2 supported labels, but only for simple queries

! more complex expressions would lead to random errors

Reimplementation of label handling

! almost always works correctly now ;-)

! speed penalty ca. 10% for typical queries

The "classic" example of label references:

! n1:[pos="NN"] "by" n2:[pos="NN"]
 :: n1.word = n2.word;

But there are many other applications, e.g.

! pron:[pos="PP"] []{0,5} verb:[pos = "VB.*"]
:: verb.pos = "VBZ" -> pron.lemma = "he|she|it";

21

logical implication
operator (new)

C
Label references & anchors

Anchors are implicitly-defined labels:

! match## # first token of current match

! matchend# last token of current match

! target# # define with @ marker or set target command

! keyword# # only with set keyword command

Anchors are available within a CQP query …

! [pos="DT"]? [pos="RB|JJ.*"]* [pos="NN"]
 :: distabs(match, matchend) >= 5

! find "long" NPs consisting of 6 or more tokens

… and they are stored with a named query result

! group MyQuery target lemma;

22

C
Label references & anchors

A little-known feature: matches can be modified by
changing labels with the set keyword command

! Time = [lemma = "time" & pos = "NN.*"];

! set Time keyword nearest [pos = "JJ.*"]
 within left 3 words;

! set Time match keyword;

• if keyword anchor is not defined, match remains unchanged

! set Time keyword NULL;

• delete keyword anchor when no longer needed

! NB: we could also have used set match directly

23

C
Using XML annotation

XML tags are stored with (optional) attribute-value pairs:

! <s> … </s>

! <text>[id="42" lang="English"] … </text>

! can be matched by including tag in CQP query, e.g. <text>

Newer versions of CWB improve support for XML tags

! attribute-value pairs can be split automatically and stored
in new s-attributes, e.g. text_id and text_lang

! tags in CQP query allow regular expression constraint:
<text_lang = "en.*"%c> … ;

! matching start and end tag correspond to single region:
<s> … </s>; $ matches exactly one sentence

! also automatic renaming of nested XML regions,
but currently no access to tree structure in CQP queries

24

C
Using XML annotation

Check whether token is contained in specific XML region

! <s> [word = "[a-z].+" & !(caption | item)]

! searches for lowercase word at start of a sentence, but not
in figure captions (<caption>) or list items (<item>)

Access attributes of XML region with label references

! e.g. textual metadata $ start tag cannot be included in query

! group MyQuery match text_domain;

! … :: match.text_domain = "economy";

Special "this" label _ points to current token:

! [word = "decency" & _.text_domain = "economy"]

! … [… & distabs(_, match) < 3] … ;
 $ must be within first 4 tokens

25

C
Feature sets

Sometimes it is useful to annotate multiple values

! disambiguation problems: NNS or VBZ ?

! annotation of WordNet synonyms: appear, look, seem

! morphosyntactic features in German ($ syncretism):
der = #Nom:M:Sg:Def | Gen:F:Sg:Def | Dat:F:Sg:Def
| Gen:M:Pl:Def | Gen:F:Pl:Def | Gen:N:Pl:Def

CWB solution: feature sets encoded as special strings

! |NNS|VBZ| $ alternative values separated & enclosed by |

! |appear|look|seem|

! |Dat:F:Sg:Def|Gen:F:Pl:Def|Gen:F:Sg:Def
|Gen:M:Pl:Def|Gen:N:Pl:Def|Nom:M:Sg:Def|
 $ notice alphabetical ordering of items

! | $ empty feature set

26

C
Feature sets

Feature sets can be queried with cleverly designed regexps

! e.g. [pos = ".*\|NNS\|.*"] $ may be a plural noun

! made easier by special notation, but still very cumbersome

CQP provides special operators for convenience

! [pos contains "NNS"] $ expands to regexp above

! [agr matches "Gen:.*"] $ unambiguous genitive

! [ambiguity(syn) = 0] $ no synonyms found in WordNet

27

C
Feature sets

Combining feature sets & labels: agreement in German NPs

! NP agreement between determiner, adjectives and noun

! i.e., valid feature combinations must be compatible
with other words in NP $ unification

! corresponds to intersection of feature sets

Testing NP agreement in CQP queries:

! d:[pos="ART"]? a:[pos="ADJA"]? n:[pos="NN"] …

! … :: amibguity(/unify[agr, d, a, n]) > 0;
$ check agreement in potential NP

! …!:: /unify[agr, d, a, n] matches ".*:Sg:.*";
$ unambiguously identified as singular NP

! NB: undefined labels are automatically ignored

28

C
The CQP macro language

CQP macros are a simply, but flexible templating system

! partial replacement for discontinued Macro Processor

! built directly into CQP $ also available in interactive mode

! works by substitution of unparsed strings $ can be used
(almost) everywhere: within constraint, multiple commands, …

! nested macro calls $ non-recursive phrase structure grammar

Define macros in separate file or with interactive commands

Macro invocation syntax: /np["coffee"]

! /unify[attribute, label, …]
is a built-in macro with a variable number of arguments

! also try /codist["that", pos];
$ mini-script with multiple commands

29

C
If you fully understand this code, you can consider yourself a CQP expert!

Macro definition example

MACRO adjp()

 [pos = "RB.*"]?

 [pos = "JJ.*"]

;

MACRO np($0=Noun $1=N_Adj)

 [pos = "DT"]

 (/adjp[]){$1}

 [(pos = "NNS?")

 & (lemma = "$0")]

;

MACRO pp($0=Prep $1=N_Adj)

 [(word = "$0")

 & (pos = "IN|TO")]

 /np["$1"]

;

MACRO np($0=N_Adj)

 [pos = "DT"]

 (/adjp[]){$0}

 [pos = "NNS?"]

;

MACRO np()

 [pos = "DT"]

 (/adjp[])*

 [pos = "NNS?"]

;

MACRO pp($0=N_adj)

 /pp[".*", "$0"]

;

MACRO pp()

 /pp["0,"]

;

30

C
Secret feature: zero-width assertions

Look-ahead patterns [:…:] perform test on next
token without including it in the query match

! simulate longest match strategy in standard mode:
[pos = "NNS?"]{2,} [: pos != "NNS?" :];

! [pos = "VB.*"] "that" [: pos != "JJ.*|N.*" :];
$ demonstrative or clausal verb complement

Look-ahead patterns are called zero-width assertions
because they do not "consume" a token

! convenient for complex constraints on XML tags:
<text> [: _.text_domain = "law"
 & !(_.text_lang = "English") :] …

! add label or target marker before/after group:
 … a:[::] (… | … | …) b:[::] … ;

31

C
Zero-width assertions & label scope

Zero-width assertions have been used to implement
macros for German NPs with agreement:

! DEFINE MACRO np_agr(0)
 a:[pos="ART"]?
 b:[pos="ADJA"]*
 c:[pos="NN"]
 [: ambiguity(/unify[agr, a,b,c]) > 0 :]
 [: /undef[a,b,c] :]
;

! built-in macro /undef[] deletes label references
$ scope of labels limited to macro body

! allows query /np_agr[] [pos="V.*"]+ /np_agr[]
to work correctly (without label interference)

32

C
Embedding CQP

Various new functions improve data exchange
with external programs

! dump $ table of query matches (cpos in text format)

! undump $ load table of query matches into CQP
(can be sorted in arbitrary order)

! tabulate $ list arbitrary information for each query match

• e.g. corpus position, matching string, POS, metadata, …

• suitable as input for statistical software ($ frequency analysis etc.)

Embedding CQP as a background process ("slave")

! set PrettyPrint off; produces machine-readable output

! child mode (cqp -c) for more robust communication

! these features are used heavily by the CWB/Perl interface

33

C
Further topics

Built-in sort command has been re-implemented

! well-defined syntax & robust operation

! additional features, e.g. reverse sorting

Frequency lists with new count command

! based on sort $ frequency list for sort keys

! alternative to group command

• count strings of arbitrary length

• case/diacritic-folding, count reverse strings

• easy access to corpus examples for each item in frequency list

• counts only continuous strings, sometimes slower than group

Read the latest version of the CQP tutorial:
http://cwb.sourceforge.net/documentation.php

34

35

Architecture

C

36

Architecture of the CWB

CL

CQP

C

Perl

interactive use

C API

C API

Xkwic

C

37

Xkwic: a monolithic dead end

CL

CQP

C

Perl

interactive use

C API

C API

C

38

Web-based interfaces to the CWB

CL

CQP

CWB/Perl
Interface

CGI
Script

Web
Server

CQPserver

C

39

CQi —"a network protocol for the CWB

CL

CQP

Web
Server

CGI
Script

Perl

C

Java

CQi

40

Indexing

C

41

CWB architecture: corpus indexing (CL)

CL

CQP

C

Perl

interactive use

C API

C API

C
CWB architecture: corpus indexing (CL)

42

Traditional wisdom on managing large data sets:

! divide into fixed-size records (table rows) for compact storage

! use indexing (based on sort operations) for fast access

! CWB: data record = token + annotations

• no support for character-level matching & alternative tokenisations

Why not use an existing relational database engine?

! table rows in relational database are independent & unordered

• fast access to token sequence is essential for CQP queries

! large text corpora are mostly static $ optimisations possible

• more compact representation of data & index

• record can be identified by its corpus position (integer constant)

• no overhead from table locking, transactions and journaling

! lack of su"ciently powerful non-commercial RDBMS in 1993

C
Design choices for the CL library

Static corpus $ compact storage & optimal compression

! not possible to add/delete documents (% search engines)

Table-like data model (record = token + annotations)

! column-major representation (% relational database)
$ all p-attributes and s-attributes are stored independently

All annotations are ASCII/Latin-1 strings

! Unicode immature in 1993, Latin-1 is compact & e"cient

No support for structured annotation / XML necessary

! sentences, paragraphs, etc. = flat sequence of regions

The whole story: Witten, Ian&H.; Mo'at, Alistair; Bell,
Timothy&C. (1999). Managing Gigabytes. Morgan Kaufmann
Publishing, San Francisco, 2nd edition.

43

C
CWB index structures (p-attribute)

#! word! ! pos! ! lemma

(0)# <text id="42" lang="English">

(0)# <s>

0# A# 0# DET# 0# a# 0

1# fine# 1# ADJ# 1# fine# 1

2# example# 2# NN# 2# example# 2

3# .# 3# PUN# 3# .# 3

(3)# </s>

(4)# <s>

4# Very# 4# ADV# 4# very# 4

5# fine# 1# ADJ# 1# fine# 1

6# examples# 5# NN# 2# example# 2

7# !# 6# PUN# 3# !# 5

(7)# </s>

(7)# </text>

44

C
CWB index structures (p-attribute)

45

cpos tokens

0

1

2

3

4

5

6

7

8

…

0

1

2

3

4

1

2

3

…

…

id lexicon

0

1

2

3

4

…

DET

ADJ

NN

PUN

ADV

…

id freq

0

1

2

3

4

…

1

2

2

2

1

…

id occurrences (cpos)

0

1

2

3

4

…

0, …

1, 5, …

2, 6, …

3, 7, …

4, …

…

C
CWB index structures (s-attribute)

46

<s> start end

0

1

2

…

0 3

4 7

… …

… …

<text> start end

0

1

2

…

0 7

… …

… …

… …

annotation

id="42" lang="English"

…

…

…

C
Hu#man coding for p-attributes

Hu'man code = optimal compression for independent
coding of individual tokens with static codebook

! similar to Morse code: use short bit patterns for frequent items

Sample Hu'man codes for part-of-speech tags

 NN 110 JJ 0100
IN 111 JJR 000000100
DT 101 JJS 0000000001
PP 1001
VB 00111

Encoding of POS tags for go to the prettiest beach:

 0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0

 VB IN DT JJS NN

47

C
Golomb coding for index files

Encode distances between occurrences of lexicon entry

! assumption: occurrences randomly distributed across corpus

Golomb codes = mixed unary/binary representation

! fixed size of binary part (average distance value

! optimal for random distribution, good worst-case bounds

Golomb code example:

! distance to next occurrence = 26 tokens

! e.g. 3-bit binary representation: 26 = 3 * 8 + 2

! Golomb code: 000 1 010

48

unary part:
3 x 8 = 24 stop bit

binary part:
24 + 2 = 26

C

49

Data compression rates of the CWB

Typical data sizes of p-attributes for 100 M word corpus

Plain text:# ca. 400-600 MB

Uncompressed attribute: # ca. 800 MB

(including all index & lexicon files)

Word form, lemma, etc.:# ca. 320-360 MB

POS, morphological features:# ca. 100-150 MB

Binary attribute: # ca. 50 MB

50

CQP

C

51

CWB architecture: corpus indexing

CL

CQP

C

Perl

interactive use

C API

C API

C
This query is intended for illustration purposes only :-)

52

Evaluation of CQP query as FSA

 ([pos="DT"]? ([pos="JJ.*"] | [pos="RB"])+ [pos="NN.*"]

 | p:[pos="PP.*"])

 v:[pos="VB.*"]+

 :: (v.pos = "VBZ" & p) -> p.lemma="he|she|it";

0

1

DT

2
JJ.*

RB

3
a:PP

JJ.*|RB

JJ.*|RB

NN.*

4
b:VB.*

b:VB.*

initial transitions
index lookup

evaluation of global constraint
(v.pos = "VBZ" & p) -> p.lemma="he|she|it"

labels $ not a true FSA
(non-regular language)

C
Consequences of FSA algorithm

Multi-pass query evaluation

! index lookup for each possible initial transition (= pass)
$ may need to store large vector of cpos in memory

! then simulate FSA from these corpus positions
$ slow & computationally expensive

Query execution speed depends on query-initial patterns

! i.e. patterns that correspond to initial transitions of the FSA

! fast queries for infrequent lexical items: [lemma="sepal"]

! slow queries for general patterns: [pos="NN"]

53

C
Consequences of FSA algorithm

Key to query optimisation: avoid FSA simulation

! reduce number of start positions for FSA simulation as far as
possible by (combined) index lookup

! cannot rely solely on query-initial patterns:
[pos = "DET"]? [pos="ADJ"]* [lemma="song"];

Automatic query optimisation di"cult in FSA representation

! needs advanced graph manipulation algorithms in C

! must also avoid expensive lexicon search with complex regexp

Standard FSA techniques not applicable because of labels

! in particular, it is di"cult to change FSA evaluation order
(so as to start from the least frequent pattern)

54

55

Future

C
(in the author's opinion)

56

Good things about the CWB

Static corpus & token-based data model

! straightforward implementation (KISS!)

! allows compact storage & e"cient access

Annotations as strings

! numbers rarely needed, structured data too complex

Regular query language (in formal sense)

! good balance between expressiveness and e"ciency

! but not suitable for querying hierarchical structure

! recursion (CFG) needed for linguistic queries (even on POS tags)

! FSA implementation hinders query optimisation

C
(reasonable decisions in 1993, but the times have changed)

Urgently needed extensions

Full support for Unicode data (UTF-8)

! essential for multilingual corpora, software libraries available

! "legacy" encodings such as Latin-1 are no longer needed

Handling of very large corpora (> 1 billion words)

! 32-bit version limited to 200-500 million tokens

! 64-bit version: up to 2 billion tokens, but queries are slow

! design limit is 2.1 billion tokens (signed 32-bit integers),
but the ukWaC corpus is already larger

Support for hierarchical structures / XML trees

APIs for high-level programming languages

! CL API available for C and Perl, but undocumented

! also need API for CQP queries, kwic output, etc.
57

C
(*&$*%#!!!!)

Big mistakes of the CWB

Overzealous data compression

! dogma of search engine optimisation, but decompression is
ine"cient (see e.g. Anh & Mo'at 2005)

Poor/non-existent software engineering

! insu"cient abstraction layers, memory management, etc.

Almost everything about the CQP architecture

! FSA implementation of regular query language

! labels make query optimisation all but impossible (mea culpa!)

! monolithic design, many internal functions too specialised

Feeping Creaturism

! incremental addition of work-arounds & clever tricks,
rather than addressing basic design limitations

58

C
The best strategy depends on user requirements, available developers, …

Strategies for future development

Re-implementation from scratch

! low-level CL layer $ corpus query library $ CQP

! alpha version after 1 year, stable beta after 2 years (optimistic)

Keep adding features & fixing problems

! until we're ready to release CWB Vista …

! but this approach might have best payo' for majority of users

Attempt refactoring of CWB source code

! implement urgently needed features one by one

! keep as much of existing codebase as possible, but make sure
new code is well-designed (as basis for further refactoring)

! new code immediately usable, but overall e'ort is larger

Re-think corpus indexing & query processing
59 60

Thank you!

