
The IMS Corpus Toolbox
Corpus Administrator's Manual

Oliver ChristUniversit�at StuttgartInstitut f�ur maschinelle Sprachverarbeitung{ Computerlinguistik {Azenbergstr. 12D 70174 Stuttgart 1oli@ims.uni-stuttgart.deLast Modi�ed: Wed Nov 9 14:33:27 1994 (oli)Created: Thu Feb 24 10:34:11 1994 (oli)Released: { not yet {tc.bib entry: Christ:94b



Contents
1 Overview 41.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 41.2 The role of the Corpus Administrator : : : : : : : : : : : : : : : : : : : : : 51.3 Organization of this manual : : : : : : : : : : : : : : : : : : : : : : : : : : : 51.4 Credits and Acknowledgements : : : : : : : : : : : : : : : : : : : : : : : : : 52 Internal corpus representation 72.1 Positional attributes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 72.1.1 Integerized �les : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 82.1.2 Inversed item sequence : : : : : : : : : : : : : : : : : : : : : : : : : : 112.1.3 Example: a simple word search : : : : : : : : : : : : : : : : : : : : : 132.1.4 The set of positional attributes : : : : : : : : : : : : : : : : : : : : : 152.2 Other attribute types : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 162.2.1 Structural attributes : : : : : : : : : : : : : : : : : : : : : : : : : : : 162.2.2 Alignment attributes : : : : : : : : : : : : : : : : : : : : : : : : : : : 182.2.3 Bigram and mapping tables : : : : : : : : : : : : : : : : : : : : : : : 182.3 External tools and dynamic attributes : : : : : : : : : : : : : : : : : : : : : 183 Encoding: Transforming a corpus into its internal representation 203.1 The internal representation of a corpus : : : : : : : : : : : : : : : : : : : : : 213.2 The encode program : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 213.3 The makeall program : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 253.4 Space requirements : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 263.4.1 Positional attributes : : : : : : : : : : : : : : : : : : : : : : : : : : : 263.4.2 Structural attributes : : : : : : : : : : : : : : : : : : : : : : : : : : : 271



IMS Corpus Toolbox: Administrator's Manual 24 The corpus registry 284.1 Some remarks about nomenclature : : : : : : : : : : : : : : : : : : : : : : : 284.2 The contents of a registry �le : : : : : : : : : : : : : : : : : : : : : : : : : : 294.2.1 The header : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 294.2.2 Positional attributes : : : : : : : : : : : : : : : : : : : : : : : : : : : 304.2.3 Structural attributes : : : : : : : : : : : : : : : : : : : : : : : : : : : 344.2.4 Mapping tables : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 344.2.5 ngram tables : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 354.2.6 Alignment attributes : : : : : : : : : : : : : : : : : : : : : : : : : : : 354.2.7 Dynamic attributes : : : : : : : : : : : : : : : : : : : : : : : : : : : : 354.3 Registration of remote corpora : : : : : : : : : : : : : : : : : : : : : : : : : 374.4 A last example : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 374.5 Steps to follow : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 385 Remote access { client and server setup 395.1 The .rat and .ratlog �les : : : : : : : : : : : : : : : : : : : : : : : : : : : 395.2 How to start the corpus data server : : : : : : : : : : : : : : : : : : : : : : : 416 Utilities and debugging tools 426.1 Decoding of corpus and attribute information : : : : : : : : : : : : : : : : : 426.1.1 Decoding of corpus information: decode : : : : : : : : : : : : : : : : 426.1.2 Decoding of word lists: lexdecode : : : : : : : : : : : : : : : : : : : 426.2 Creation and Decoding of Bigram Tables : : : : : : : : : : : : : : : : : : : : 436.2.1 Creation of bigram tables: gen-bigrams : : : : : : : : : : : : : : : : 436.2.2 Decoding of bigram tables: decode-bigrams : : : : : : : : : : : : : 436.3 Creation and Decoding of Mapping Tables : : : : : : : : : : : : : : : : : : : 436.3.1 Creation of mapping tables: gen-mapping-table : : : : : : : : : : : 436.3.2 Decoding of mapping tables: decode-mapping-table : : : : : : : : : 446.4 General utilities : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 446.4.1 Comparing word lists and corpora: check-coverage : : : : : : : : : 446.4.2 Converting internal integers to readable numbers: itoa : : : : : : : 446.4.3 Converting readable numbers to internal integers: atoi : : : : : : : 44Oliver Christ IMS Stuttgart January 27, 1997



IMS Corpus Toolbox: Administrator's Manual 37 Access control and security issues 457.1 Controlling local access to corpora : : : : : : : : : : : : : : : : : : : : : : : 457.2 Controlling remote access to corpora : : : : : : : : : : : : : : : : : : : : : : 46A Hardware and operating system requirements 48B Reused software packages and copyright notices 49B.1 The regular expression matcher by Henry Spencer : : : : : : : : : : : : : : 49

Oliver Christ IMS Stuttgart January 27, 1997



Chapter 1Overview
1.1 IntroductionThe IMS corpus toolbox is a set of tools for the e�cient encoding, representation andquerying of large text corpora. This manual describes how to encode a text corpus andhow the various administration tools must be used to transform a text corpus into therepresentation used by the access tools. This manual does not describe the functionality ofthe query tools or the architecture of the toolbox in general. If the reader is not familiar withthe overall architecture, we recommend a \top-down" reading through the more generalpapers, especially [Christ, 1994] for an overview of the system architecture as a whole.The internal representation of a corpus consists of a set of �les which represent the cor-pus data, the di�erent \items" (i.e., words) used in the corpus and several index �les fore�cient lookup. To transform a text corpus from its textual representation to the internalrepresentation used by the IMS toolbox, the following steps have to be performed:1. transformation of the text �le in one-word-per-line format;2. encoding of the text �le;3. declaration of the corpus in a global \registry directory";4. and building several �le indices.Steps 1 and 3 have to be done manually, for steps 2 and 4 there are tools within the toolbox.The third step, the registration of a corpus, is necessary since almost all tools (but the oneused in step 2 above) access a corpus via a symbolic name. When a symbolic name is passedto a tool, it is looked up in a central directory (called the \corpus registry"), where the toolexpects to �nd a �le with the very same name as the symbolic name of the corpus to beaccessed. This �le holds a description of the components of the corpus, mainly a list wherethe components are stored physically. So, a user does not have to know where a corpus isstored, he or she only has to know its symbolic name to access it.After a corpus is transformed into its internal representation and registered, it can beused by the various tools of the toolbox, for example the query tools (Xkwic, Cqp,print-aligned). 4



IMS Corpus Toolbox: Administrator's Manual 51.2 The role of the Corpus AdministratorWithin the IMS corpus toolbox, the corpus administrator has the tasks to provide userswith new corpora or to change existing corpora when some information has to be addedor updated. Second, the administrator has to properly install the usually large corpus �lesin the �lesystem and to �nd an \optimal" place with regard to backup policies, disk usageand access e�ciency. Third, the corpus administrator has to care about access control,since corpora exist where copyrights or license agreements inhibit an unrestricted access,even within one institution. These tasks are similar to \standard" system administration.We therefore suggest that the corpus administration tasks are ful�lled by someone who isfamiliar with the standard Unix text processing tools, backup strategies, and security andaccess control, that is, your local system administrator.1.3 Organization of this manualThis manual is organized as follows. The next chapter 2 explains the internal data structureswhich are used to store the corpus data. You may skip the entire chapter if you want, itis not necessary for the other chapters, but useful if you have problems with the toolsor want to learn how to manipulate the data �les. Chapter 3, then, describes the varioussteps which are necessary to transform a corpus from its textual representation into itsinternal representation. Chapter 4, then, describes in detail the registry directory and theformat of the �les which describe the physical attributes of a corpus. Chapter 5 describeshow to set up the client-server-capabilities of the toolbox. Chapter 6 describes utilitiesand related tools which either add more (or other types of) information to a corpus orare useful for other purposes, for example for debugging of a corpus (during encoding).Another important point is access control for corpora, which is discussed in chapter 7. Tocheck whether the tools can run at all on your system, you may refer to appendix A forhardware and operating system speci�c requirements of our tools.1.4 Credits and AcknowledgementsThe internal data structures we use in Cqp, Xkwic and some other tools of the toolboxmake use of integerized data �les and reversed indices. Both of these techniques are well-known in the area of information processing for many decades, but to our knowledge the �rstwho applied them to text and corpus processing in the linguistic area was Ken Church.He deserves our greatest thanks for pointing us to these methods.
Oliver Christ IMS Stuttgart January 27, 1997



IMS Corpus Toolbox: Administrator's Manual 6Neither the authors, nor IMS, nor the University of Stuttgart make any representationsabout the suitability of the software described herein or the associated documentationfor any purpose. It is provided "as is" without express or implied warranty. We disclaimall warranties with regard to the software described herein or the related documentation,including all implied warranties of merchantability and �tness, in no event shall we beliable for any special, indirect or consequential damages or any damages whatsoeverresulting from loss of use, data or pro�ts, whether in an action of contract, negligence orother tortious action, arising out of or in connection with the use or performance of thissoftware.

Oliver Christ IMS Stuttgart January 27, 1997



Chapter 2Internal corpus representationThis chapter explains how corpus data is represented internally. When you understand theinternal representation, you can use the tools of the toolbox to create, update or changecorpus information without having to go back to the textual version and encoding the wholestu� again. You will also be able to �gure out how to encode the internal representationfor �les which cannot be computed by the tools of the toolbox, for example due to memoryproblems, software bugs or limitations.If you do not need to \hack" with the corpus data, you may skip the entire chapter. Theunderstanding of the internal representation is not necessary for the other parts of thismanual, but useful if you encounter problems with the tools.2.1 Positional attributesWithin the IMS corpus toolbox, a corpus can have an arbitrary number of annotations ofdi�erent types. In our system, a corpus is primarily regarded as a sequence of words (notas a sequence of characters). The words, then, are numbered, so that we can directly accessthe word at a certain corpus position p (i.e., the �rst word in the corpus, or, in general,the nth word of the corpus). This leads to the more general notion of positional attributes,which is the most important annotation type. Attributes of this class have a (string) valueat each corpus position.1
Pierre Vinken , 61 years old

0 1 2 3 4 5 n-2 n-1

blessing .

......:

word:

pos: N N NUM N ADJ N IPIP

Figure 2.1: Corpus positions and values1When the corpus is stored in a verticalized one-word-per-line format, a corpus position can also beregarded as the number of a line in this representation.7



IMS Corpus Toolbox: Administrator's Manual 8The corpus text falls within the class of positional attributes, since we can specify, for eachcorpus position, the word which occurs at that position. The positional attribute whichholds the corpus text proper always has the prede�ned attribute name \word". Otherpositional attributes are, for example, part-of-speech tags, which are assigned to the wordsof the corpus. In our view, we regard POS-tags as assigned to a corpus position rather thanto the word at that position. Then, the positional attributes \word" and \tag" do not di�ervery much any more: both have, for each corpus position, a value which is, in our case, astring (as illustrated in �gure 2.1). We therefore use the same internal representation for theword sequence of the corpus (the corpus text) and the tag sequence (the associated POS-tags), as well as for other, additional positional attributes like lemmas, morphosyntactictags, etc. In other words, a tagged corpus is in our view a set of two positional attributes ofequal length, one of which captures the sequence of words, the other captures the sequenceof tags. In the following, we therefore use the term \item" to abstract from the type ofinformation encoded in such a positional attribute (here, word vs. tag). A corpus in general,then, is a collection of attributes of di�erent types.The question of the internal representation of corpora with multiple (positional) anno-tations can thus be reduced to the question of representing a single positional attribute(remember that the all positional attributes must be of equal length, that is, encode equallength item streams).The two key concepts of the internal representation of a positional attributes are:� integerized representation: items are encoded as integer numbers, where equal items(words, : : : ) get the same integer code. The sequence of items is then represented asa sequence of integer numbers;� inversed �le indices: for the sequence of numbers, an inversed �le is created. Theinversed �le captures, for each item (better: item code) the set of occurrences of theitem in the positional attribute.For the construction of the integer code, you normally need a segmentation or tokenizationtool, since the, and the are considered di�erent and undesirably get di�erent codes.The advantages of the integer code is that the represented items have equal internal length(in the case of integers, 4 bytes on our machines). Since the length of the item sequence isknown and the items are of equal length, the item sequence can be handled like an arrayof items, with the advantage of random access. The inversed �le is needed for lookup: sinceit directly indexes the set of occurrences of a given item (code), the occurrences can becomputed in a single step.2.1.1 Integerized �lesAs said above, the �rst set of data structures is an integerized �le of the textual representa-tion of the item sequence. Then, the item sequence is represented as a sequence of integercodes.It is obvious that at least two functions are needed to handle this encoding:Oliver Christ IMS Stuttgart January 27, 1997



IMS Corpus Toolbox: Administrator's Manual 9� �rst, a function to compute the integer code of a given item (a string);� second, a function to retrieve the (character) string when the code is given.These two functions require some auxiliary data structures to be e�ciently computable.The �rst data structure is the item list or \lexicon": it captures the set of (di�erent) items.Internally, this is the set of strings occurring in the item sequence, where a NULL character(octal \000) is padded at the end of each word. The �le is not sorted (but it may be). AUNIX command to produce this �le would be:(2.1) sort -u 1wpl-item-seq | tr '\n' '\0' > lexiconwhere it is assumed that the input item sequence is in one-word-per-line format. In thisexample, the output would be sorted, but this is not necessary. The item list already de�nesthe item code for each item, since it is assumed that the �rst item in the item list has code0, the next one has code 1, and so on.Note that \traditional" trs delete ASCII 0 (0) from the input stream, so that the example above will not work with \traditional tr".GNU's tr does not have this bug.For the lookup of a string in this list, it is useful to have an index of starting positions ofthe strings in this �le. This index gives, for each item code, a mapping from item codesto the �le o�sets (in bytes) in the item list. Thus, the starting position s of the the stringrepresented by the item code c is computed in one step via this index, which we call theitem list index or lexicon index . Since the strings in the item list are terminated with theNULL character (which must not occur in the items themselves), the string represented byan item code is everything between the starting position computed by the item index upto the next NULL character.Again, this index can be computed by a UNIX command when the lexicon is alreadycomputed:(2.2) tr '\0' '\n' < lexicon |gawk 'BEGIN{pos=0}{print pos; pos= pos + length($1) + 1}' |atoi > lexicon.idxatoi is a utility program included in the toolbox and maps numbers (represented textuallyas a sequence of digits) to their internal representation.The next data structure supports the mapping from strings to their item codes. This couldbe done in a number of di�erent ways { currently, binary search over a sorted string index isimplemented. 2 For example, the same functionality could be achieved with TRIEs, whichperhaps would need more space, but could compute the conversion in n steps where n isthe length of the input string.2The method currently implemented in the toolbox is very simple and could be sped up a lot, but sinceit is rarely used (all computations are done on the item codes, whenever possible, instead of strings), wedidn't yet convert it to a more e�cient method.Oliver Christ IMS Stuttgart January 27, 1997



IMS Corpus Toolbox: Administrator's Manual 10The binary search requires a sorted structure. For this purpose, we do not keep a sorteditem list, but rather another index (denoted by Ls) which holds, for each position p of anitem in a \virtual" sorted item list (ranging from 0 to the number of encoded items minus1), the item code at this position. So, Ls(0) is the item code of the \smallest" item, andLs(1) is the code of the second-smallest item, etc. The sorted item list can thus be textuallyprinted by the functionfor (i = 0; i < "SizeOfItemSet"; i++) fcode = SortIdx[i];s = LexIdx[code];print s;gHere, for each possible position in the sorted index, i, �rst the item code code at that posi-tion is computed. Then, through accessing the item index, the character string representedby code is determined, which is then printed.As you can imagine, this �le can easily produced by a UNIX command:(2.3) tr '\0' '\n' < lexicon |gawk '{print NR-1 "\t" $1}' |sort +1 |gawk '{print $1}' |atoi > lexicon.srtThe �rst line computes the strings from the item list, which are then pre�xed by their code(which is the \position" in the item list), beginning with code 0 for the �rst word. This listof code/value pairs is then sorted by the values, which occur in the second column. Theoutput of the sorting is then �ltered, so that only the codes are printed. The code sequenceis then transformed into the internal format and written to the index �le.Note:One of the reasons we do not use these UNIX commands to create the data structuresis that the UNIX sort command sometimes handles the order of 8bit-characters di�erentlyfrom other programs (it works with signed characters, whereas internally we work withunsigned characters). So the UNIX commands which use sort only create the same �leswhen the standard 7bit ASCII character set is used. The internal functions which map fromitems to item codes will not work properly otherwise.The data structures used to represent the encoded item sequence and the associated aux-iliary data structures which facilitate the necessary mappings are illustrated in �gure 2.2.The only �le for which we didn't yet give a UNIX command is the item sequence (or better,the sequence of encoded items). gawk's arrays can be used for this purpose. One possiblityis to read an already existing item list �le, which may be produced by the commands above.Another possiblity is to produce the item list and the indices in a single gawk run. Thescript below can be used for this second purpose, but it assigns other item codes:(2.4) BEGIN{maxcode = 0;position = 0;}Oliver Christ IMS Stuttgart January 27, 1997



IMS Corpus Toolbox: Administrator's Manual 11
...

...

...

27

103

27

49

31

...

...

...

...

...

27

28

29

30

31

...

...

...

1047

Item Sequence

Item List Index

...

...

never

the

cucumber

;

‘‘

&

wine

...

...

Item List

Item Index ==> String

Sorted Index

Figure 2.2: Integerized items and associated data structures{ if (!($1 in itemlist)) {itemlist[$1] = maxcode;print $1 > "lexicon.asc"print position > "lexicon.idx.asc"position = position + length($1) + 1;code = maxcode;maxcode++;}elsecode = itemlist[$1];print code > "corpus.asc"}After the code is executed with a text �le as input, the ASCII representations have to beconverted into the internal format (this could be done via pipes in the gawk script also, butwe left that out here for the sake of clarity):(2.5) atoi < corpus.asc > corpustr '\n' '\0' < lexicon.asc > lexiconatoi < lexicon.idx.asc > lexicon.idxrm -f *.ascAfter that, command 2.3 can be used to produce the sorted item list index.2.1.2 Inversed item sequenceThe second set of data structures concerns the inversed �le index associated with the itemsequence. This inversed �le holds, for each item code, the set of positions in the itemOliver Christ IMS Stuttgart January 27, 1997



IMS Corpus Toolbox: Administrator's Manual 12sequence where the item code occurs. Through the mapping functions introduced in thelast section, we can also regard the inversed item sequence as a list of corpus positionswhere a certain word or part-of-speech tag occurs.The inversed �le is represented by a set of three �les:� �rst, the inversed �le itself, which contains a set of corpus positions;� second, an index into this �le. This index returns, for each item code, the start pointof the associated occurrences in the inversed �le;� third, a table of item code frequencies, which gives, for each item code, the numberof occurrences of the code in the corpus (which is, of course, equal to the size of theset of occurrences).The three �les can also be computed by UNIX commands. First, the reversed sequence isproduced by the following command:(2.6) itoa corpus |gawk '{print $i "\t" NR-1}' |sort -ns |gawk '{print $2}' |atoi > corpus.revFirst, the internal representation of the item sequence is converted into readable numbers.This number sequence is then su�xed with its position in the corpus, which is then sortedby the code, so that we get code/position pairs. From this sequence, the position is strippedo�, so that we only get the sequence of positions, which exactly is the inversed �le.The frequencies can already be computed in the gawk encode script (2.4), but anotherpossibility is a slightly modi�ed version of the script above:(2.7) itoa corpus |gawk '{print $i "\t" NR-1}' |sort -ns |gawk '{print $1}' |uniq -c |gawk '{print $1}' |atoi > corpus.cntHere, we keep the code sequence of the code/position pairs. This sequence of codes appearsin sorted order. By the call to the uniq utility, equal subsequent lines (here: codes) arecollapsed into only a single line and counted. These counts are stripped o� and convertedto internal format.3The last �le, the index into the inversed �le, can simply be computed from the frequenciesby summing them up:(2.8) itoa corpus.cnt |gawk 'BEGIN{pos=0}{print pos; pos+=$1}' |atoi > corpus.rdx3It would be more e�cient to use a gawk array to hold the item code counts, since the sort step couldbe omitted. The version here is just for clarity.Oliver Christ IMS Stuttgart January 27, 1997



IMS Corpus Toolbox: Administrator's Manual 13Now, the whole set of seven �les representing the data of a positional attribute (whichwe call the seven components of a positional attribute) have been created. In the toolbox,there are tools which perform these steps much faster than the shell scripts presented here.But in some cases, the utilities of the toolbox run into memory problems, and then thesescripts may help to produce the encoded version of a corpus.
533:

533+23:

...

...

27

28

29

30

31

...

...

...

...

23

5

231

1

17

19

101

397

440

...

...

...

27

28

29

30

31

...

...

...

533

3113

12

740

...

Reversed FileIndex into reversed file

Nr of item occurrences (freq)

Item Index  ==>  Set of occurrencesFigure 2.3: Reversed �le indicesThe components associated with the inversed �le and their meanings are illustrated in�gure 2.3. The next section will show the single steps which are taken when a simple searchfor an item, a word for example, is performed.2.1.3 Example: a simple word searchAfter the internal data structures have been introduced, we can compute the concordancefor a single item, for example the word the. Most datastructures can be treated as an array,so we use the symbols� C for the item sequence (accessed by C[i] where i is a corpus position). The elementsof C are item codes;� R for the reversed item sequence (accessed by R[i] where i is an index into thissequence, computed from IR below). The elements of R are corpus positions;Oliver Christ IMS Stuttgart January 27, 1997



IMS Corpus Toolbox: Administrator's Manual 14

...

... ... 27 28 29 30 31 ... ... ...

...

N
r 

o
f 

it
em

 o
cc

u
rr

en
ce

s 
(f

re
q

)

23 5 23
1

1

S
o

rt
ed

 In
d

ex
W

o
rd

 li
st

... ... n
ev

er

th
e

cu
cu

m
b

er

; ‘‘ & w
in

e

...

ID
: 

27

53
3:

53
3+

23
:

R
ev

er
se

d
 C

o
rp

u
s

17 10
1

39
7

44
0

...

... ... 27 28 29 30 31 ... ... ...

53
3

31
13

12 74
0

...

In
d

ex
 in

to
 r

ev
er

se
d

 c
o

rp
u

s

"M
at

ch
"

C
o

rp
u

s

... ... ... 27 10
3

27 49 31 ... ... ...

10
1:

In
d

ex
 in

to
 W

o
rd

 L
is

t

an
d

 W
o

rd
 L

is
t 

L
o

o
ku

p

C
o

n
co

rd
an

ce

E
le

m
en

t

99

Figure 2.4: A simple word search
Oliver Christ IMS Stuttgart January 27, 1997



IMS Corpus Toolbox: Administrator's Manual 15� IL for the item list index (accessed by IL[c] where c is an item code). The elementsof IL are byte o�sets into the item list;� F for the item frequency table (accessed by F [c] where c is an item code). Theelements of F are item frequencies in C;� IR for the reversed item sequence index (accessed by IR[c] where c is an item code).The elements of IR are pointers (o�sets) into R;� L for the item list (an array of characters, only accessed by o�sets of IL);� SL for the sorted item list index (accessed by SL[i] where i is a position in the \virtual"sorted item list). The elements of SL are item codes.These seven arrays are the components of a positional attribute.For computing the set of occurrences of a textual item in C, the following steps have to betaken (also illustrated in �gure 2.4 for the word \the"):� �rst, the item code c(i) of item i has to be determined. For this purpose, the sorteditem index SL is consulted and searched with binary search until the item code isfound;� if the item code could be determined, the reversed item sequence index is consultedto determine the starting position rs(i) = IR[c(i)] of the position set associated withi in the reversed item sequence;� second, the item frequency list is accessed to compute the \length" of the positionset f(i) = F [c(i)];� then, the set of occurrences P (i) is the set of positions stored in the reversed itemsequence R starting at rs(i) with length f(i) (R[rs(i)] : : : R[rs(i) + f(i)� 1]).The task of computing the set of occurrences of i in the item sequence is then completed.Note that the item sequence itself didn't have to be accessed.For computing the concordance and printing it, though, the item sequence C must beconsulted. When cl is the left display context (in terms of items) and cr is the right context,for each p 2 P (i) the \subsequence" between [p� cl; p+ cr] in C must be computed (in thebounds (0; jCj�1). For each item k in this subsequence, the associated (textual) item mustbe determined by computing the start position ts(k) = IL[k] of k in the item list index.Then, the item list can be consulted to get the string s(k), which then is printed.2.1.4 The set of positional attributesThe IMS Corpus Toolbox supports an arbitrary number of positional attributes. Eachpositional attribute has its own set of components. For each positional attribute, the lengthof C and R are equal (see also �gure 2.5):jCj = jRjOliver Christ IMS Stuttgart January 27, 1997



IMS Corpus Toolbox: Administrator's Manual 16

Item list

Item Seq
Item list

Item Seq

Item Seq

Reversed Item Seq

Reversed Item Seq

Reversed Item Seq

Item list

Item freqs

Sorted Idx

Index for RC

Item freqs

Sorted Idx

Index for RC

Sorted Idx

Index for RC

Item freqs

PA word

PA pos

PA lemma

Index for IL

Index for IL

Index for IL

Figure 2.5: The set of positional attributesand the lengths of IL; IR; SL; and F are equal:jILj = jIRj = jSLj = jF jFurthermore, between all positional attributes associated with a corpus, the lengths of theitem sequences of these attributes must be equal:jCwordj = jC lemmaj = jCposj = jCsynj = :::of course, no such condition usually holds between the other components of two positionalattributes.2.2 Other attribute types2.2.1 Structural attributesStructural attributes capture information about boundaries of sentences, paragraphs,phrases, or other entities. Internally, these structures are represented as intervals of corpuspositions, which are the start and end point (inclusive) of the structure. Such an inter-val is a pair of corpus positions. Therefore, each structural item needs 8 bytes of storageinternally (4 bytes, the size of an integer, for each of the two positions).Currently, there are two limitations with respect to structural attributes:Oliver Christ IMS Stuttgart January 27, 1997



IMS Corpus Toolbox: Administrator's Manual 17� �rst, the intervals must not be recursive (for example, embedded NPs in NPs);� and they must not be overlapping.
Pierre Vinken , 61 years old

0 1 2 3 4 5 n-2 n-1

blessing .

......:

word:

pos: N N NUM N ADJ N IPIP

s

paragraph

Positional

Attributes

Attributes

Structural Figure 2.6: Structural attributesFigure 2.6 illustrates the representation of structural attributes. The number of structuralattributes associated with a corpus is not limited.Creating structural attribute dataUnlike positional attributes, the data for a positional attribute is stored in a single �le,S. Normally, the structural attribute data is created with the encode utility. But in somecases, it is useful to manipulate or create the �les through other utilities. The data �le Sis an array of integer pairs, where jSj is the number of intervals. The �le size of S is then4 � 2 � jSj, since for each interval, two integer numbers have to be stored, each of whichneeds 4 bytes.If the �les are constructed manually (without the help of encode, for example, after thecorpus has been encoded), a simple awk script can help. You must, however, be aware of theinternal representation of positional attributes and the \logics" of corpus positions; second,some pitfalls have to be circumvented.Let's assume that a one-word-per-line input �le with marked sentence boundaries (inSGML-style, like <s>...</s>) is available. Then, the intervals can be extracted by thefollowing awk script (the output of which has to be converted into internal integer formatwith atoi):(2.9) BEGIN{position = 0;open=0;structure = "s"opentag = "<" structure ">"closetag = "</" structure ">"}{ if ($1 == closetag) {# closing tag, don't increment position.if (open) {print position - 1; # thanks to a3@wsserv.vdl.nl (Adri Verhoef)Oliver Christ IMS Stuttgart January 27, 1997



IMS Corpus Toolbox: Administrator's Manual 18open = 0;}else {print "Closing non-open group at line " NR ": " $0 >> "/dev/stderr"exit}}else if ($1 == opentag) {# tag, don't increment position thenif (open) {# forgot to close group, which we don't consider an errorprint position-1}print positionopen = 1}else if ($1 ~ /<\/?[a-zA-Z]+>/) {# do nothing, other structural tag?}elseposition++;}END{if (open)print position-1}First, care must be taken when groups are closed which are not open. The other case,reopening open groups, is not considered an error, since closing tags are optional. Addi-tionally, when structure tags are used in the text, the line number (position) must not beincremented. But even then, this awk program may yield errors. So, at least check whetherthe size of the resulting �le can be divided by 8.2.2.2 Alignment attributes2.2.3 Bigram and mapping tables2.3 External tools and dynamic attributes

Oliver Christ IMS Stuttgart January 27, 1997



IMS Corpus Toolbox: Administrator's Manual 19
Pierre Vinken , 61 years old

0 1 2 3 4 5 n-2 n-1

blessing .

......:

word:

pos: N N NUM N ADJ N IPIP

Pierre Vinken , 61

0 1 2 3 4 5

word: , wird

Alignment

Positional

Attributes

Figure 2.7: Alignment attributes
Pierre

...

years

61

,

Vinken

P
ie

rr
e

V
in

ke
n

, 61 ye
ar

s

...

Pierre

...

years

61

,

Vinken

...N
P

N
P

S

P
U

N
C

T

C
A

R
D

N

Bigram Tables:

Mapping Tables:

Figure 2.8: Bigram and mapping tables
Value Request

Data Access Module

pipe() invocation

Value computation

Value passing
Value check/conversion

Value return

External ToolFigure 2.9: External (dynamic) attributesOliver Christ IMS Stuttgart January 27, 1997



Chapter 3Encoding: Transforming a corpusinto its internal representationWithin the IMS Corpus Toolbox, a corpus can have an arbitrary number of annotations ofdi�erent types. In our system, a corpus is primarily regarded as a sequence of words (notas a sequence of characters). The words, then, are numbered, so that we can talk aboutthe word at a certain corpus position p, the �rst word in the corpus, or, in general, the nthword of the corpus. This leads to the more general notion of positional attributes, which isthe most important annotation type. Attributes of this class have a (string) value at eachcorpus position.1The corpus text falls within the class of positional attributes, since we can specify, for eachcorpus position, the word which occurs at that position. The positional attribute whichholds the corpus text proper always has the prede�ned attribute name \word". Otherpositional attributes are, for example, part-of-speech tags, which are assigned to the wordsof the corpus. In our view, we regard POS-tags as assigned to a corpus position ratherthan to the word at that position. Then, the positional attributes \word" and \tag" donot di�er very much any more: both have, for each corpus position, a value which is, inour case, a string. We therefore use the same representation for the word sequence of thecorpus (the corpus text) and the tag sequence (the associated POS-tags). In other words, atagged corpus is in our view a set of two corpora of equal length, one of which captures thesequence of words, the other captures the sequence of tags. In the following, we thereforeuse the term \item" to abstract from the type of information encoded in such an attribute(here, word vs. tag). A corpus then, is a collection of attributes of di�erent types.In the following section 3.1, we shortly describe the internal representation of a corpus.Section 3.2 describes the steps which are necessary to prepare a textually representedcorpus to be suitable as input for the encoding tools as well as the �rst of the two encodingtools, encode. Section 3.3 then describes the second encoding tool which is used to buildthe indices associated with a corpus.1When the corpus is stored in a verticalized one-word-per-line format, a corpus position can also beregarded as the number of a line in this representation.20



IMS Corpus Toolbox: Administrator's Manual 213.1 The internal representation of a corpusAfter encoding, each item of a textual corpus is represented as a unique integer value2.For example, if the �rst item of a text corpus is \The", all \The"s in the text corpuswill internally be represented as the integer number 03. The corpus can then be physicallyrepresented as a sequence of integer numbers. To be able to get the item which is representedby an integer, another (indexed) �le holds the mappings from integers to strings. Up tonow, 3 �les are necessary to hold the information: the corpus (consisting of a sequenceof integers), the \lexicon" which holds, for each integer, the string it represents, and anindex to the lexicon. These three �les are those which are produced within the second stepduring the encoding of a corpus. The tool which performs this task is called encode and isdescribed below in section 3.2.Two additional �les are built next: the �rst holds information about the sorted sequenceof the items in the lexicon, which is necessary to e�ciently compute the integer code of anitem, given the string. The other �le holds, for each item, the number of times it occurs inthe corpus.For e�cient lookup, a reversed �le or reversed index has to be built. This index holds, foreach item in the corpus, the corpus positions where the item occurs. This index is indexeditself, leading to another �le. In summary, we have seven �les so far which represent theinformation of one positional attribute. The four additional �les which are not built by theencode program are created with the makeall program described in section 3.3. But priorto the encoding of a corpus, it has to be transformed into a format which is suitable asinput for the encode program, which is described in the next section.3.2 The encode programWhen a corpus consists of several positional attributes (for example, a POS attributeadditionally to the standard \word" attribute), it can either be encoded in one single step(provided that it is in a suitable textual input format for encode) or the various positionalattributes can be encoded one after another and be added to an already existing corpus.This latter way is also useful when one of the positional attributes has been changed, forexample, when a tagset has been changed or a better tagger was available to produce moreaccurate tag assignments.In both cases, the input format is a one-word-per-line format, where each item which is tobe encoded occurs in a single line. This line may contain blanks, providing a way to encodeadjacent multi-word lexemes, if desired. But care should be taken to avoid blanks at theend of an item, since, for example, \the" and \the " are di�erent strings and therefore areencoded with di�erent codes which can lead to undesired e�ects when not all occurrencesof the are found in a text due to a blank at the end of some.In the case of the corpus text, the input may look as follows:2The internal corpus representation we use is highly inspired by an { unfortunately { unpublished draftpaper by Ken W. Church, \A Set of Unix Tools for Processing Large Text Corpora".3Of course, \the" will get another code than \The", since \The" and \the" textually di�er and are notconsidered equal.Oliver Christ IMS Stuttgart January 27, 1997



IMS Corpus Toolbox: Administrator's Manual 22PierreVinken,61yearsold,willjointheboardasanonexecutivedirectorNov.29.Another �le, then, may hold the sequence of assigned tags (in which case both �les musthold the same number of lines). The input format can, for example, be produced out of araw text �le with the tr command4:tr ' ' '\n' < text_file > 1wpl-fileThis command replaces all blanks in the input �le with line breaks. The encode programthen takes a one-word-per-line input �le (or reads that format from stdin) and creates thethree �les corpus, lexicon and lexicon.idx in the current directory:encode -t 1wpl-fileThe -t option instructs encode to read its input from the �le given as an argument ofthe option instead of reading the standard input. To do both the transformation and theencoding in a single step, one could enter the following pipe:tr ' ' '\n' < text_file | encodeor, if one wants to hold the text in a compressed format:zcat text_file.gz | tr ' ' '\n' | encodeIn general, the one-word-per-line format can be produced by any program you like. Inthe simple tr examples above, it is already assumed that the corpus has been tokenized(special characters have been separated from the words), perhaps even a sentence bound-ary detector must be run on a raw corpus to produce the appropriate input �le. Thesimple example only shows how encode processes its input, in general, this method is notapplicable to new, raw corpora which �rst may have to be preprocessed by other tools.Now, encode may also take an annotated corpus with several positional attributes in asingle �le. In this case, each line of the input format consists of a number of attributevalues, separated by tabulator characters. Thus, the input �le consists of several columns,each denotes one positional attribute. A POS-tagged text then may look as follows:4The tr command is a standard command available on many platforms and is not part of this tool set.Oliver Christ IMS Stuttgart January 27, 1997



IMS Corpus Toolbox: Administrator's Manual 23Pierre<tab>NPVinken<tab>NP,<tab>,61<tab>CDyears<tab>NNSold<tab>JJ,<tab>,will<tab>MDjoin<tab>VBthe<tab>DTboard<tab>NNas<tab>INa<tab>DTnonexecutive<tab>JJdirector<tab>NNNov.<tab>NP29<tab>CD.<tab>SENTwhere <tab> denotes a single tabulator character (ASCII value 9)5. encode must thenknow which positional attribute is represented in the other columns of the �le and howthey shall be named. This is done with the -P option:encode -t <input-file> -P posHere, the option -P pos (\P" for \positional attribute") instructs encode to treat thesecond column in the �le as the sequence of values of the pos attribute. The �les associatedwith the pos attribute have their names pre�xed with pos (which leads to pos.corpus,pos.lexicon and so on). The order in which the -P options are given is relevant, since the�rst -P option denotes the name of the attribute represented in the second column in theinput �le, the second -P option denotes the third column etc. By default, the �rst column istreated as the word sequence and therefore gets the pre�x word, but this can be overriddenwith the -p option. Please refer to the manual page of encode for details.Up to 32 positional attributes can currently be encoded in a single step. If large amountsof text are to be encoded, try to determine the disk space the corpus needs after encodingin advance and look for a �lesystem where enough space is available. Some hints on theexpected size are given in section 3.4. As explained in chapter 4, it is possible to split the�les of a corpus between several �lesystems in case there isn't enough space on a singledisk. If all else fails, you may have to encode the set of positional attributes in several runsof encode, each with the appropriate pre�x passed with the -p option.A corpus (or an arbitrary positional attribute) may be assigned another type of informationwhich can be encoded with the encode program, namely structural information which canbe used to represent article, sentence or paragraph boundaries. This kind of information isrepresented in the input �le with SGML-like markers:<article><s>Pierre<tab>NPVinken<tab>NP,<tab>,5There are no general hints on how to produce this input format. In general, it is a good idea to usestandard tools like awk and sed.Oliver Christ IMS Stuttgart January 27, 1997



IMS Corpus Toolbox: Administrator's Manual 24...29<tab>CD.<tab>SENT</s><s>...</s></article>Of course, structural information can be encoded independently of additional positionalattributes in the �le. Some points have to be noted:� the end tags may be omitted. In that case, a structure spans all items until the startof the next structure or the end of �le;� in a line with a structure marker (s, article), no values of positional attributes mayoccur;� if a structure marker line, everything after a blank or after the closing angle bracket(>) of the tag is neglected;� structures must not be recursive or overlapping, that is, trees cannot be represented.In the above example, the call for encode would look like this:encode -t <input-file> -P pos -S article -S sHere, the two encoded structural attributes are each declared with the -S (for \structuralattribute") option. The order in which the structural attributes are declared does notmatter.Again, up to 32 structural attributes can currently be encoded in a single step.Be careful to declare all structural attributes in the encode call, since undeclared structuralattributes are considered as simple attribute values in the �rst column and therefore aretreated literally. If you are encoding several positional attributes at once, an error willoccur since lines with undeclared structural attributes in the �rst column in general do nothave tabulator-separated columns after them. The rule is simple: either a line consists ofa structure attribute designator in angle brackets or is line of a �xed numer of tabulator-separated columns. Errors may occur if this rule is not obeyed.encode accepts a number of further options:� -p <prefix> has the e�ect that the �les belonging to the positional attribute in the�rst column of the input �le will get the pre�x \prefix.". Note that the dot at theend of the pre�x is added automatically and must not be part of the option value. Nor-mally, the �les get the name corpus[.cnt,.rev,.rdx] and lexicon[.idx,.srt].This will lead to problems if a positional attribute is encoded after a corpus is al-ready present in the directory the data is written to, since the names of the corpus�les may collide with the those of the new attribute. Therefore, when the pre�x isnot given, data may be overwritten and lost. This option a�ects only the names ofthe �les for the positional attribute in the �rst column of the input �le, the otherpositional attributes { if present { will get the pre�x given with the -P option;Oliver Christ IMS Stuttgart January 27, 1997



IMS Corpus Toolbox: Administrator's Manual 25� -d <path> lets the user specify the directory in which the data shall be written. Thepath should not end with a slash. Default is to write all output �les to the currentdirectory;� -s instructs encode to skip empty lines (lines with no characters { not even blanks {in it) during encoding.encode accepts a number of further options. Please refer to the encode manual page forthe most recent description of the program.Please be aware that encode writes it output �les into the current directory unless the-D option is speci�ed. Be careful when you add (or update) a positional attribute to acorpus after encoding the corpus itself: a loss of data may occur during the encoding ofthe positional attribute, since it tries to write the data to the same �les in which thecorpus data may already be stored. Either you should pass the -p option to pre�x the�les belonging to the �rst column or put each positional attribute in a directory of itselfto prevent encode from overwriting important data. It is a very good idea to change the�le access mode of all �les belonging to a positional attribute to non-writeable for anyoneafter encoding, in order to prevent accidential overwriting.3.3 The makeall programAfter encoding a corpus, each positional attribute has to be declared in the corpus registry.Please refer to chapter 4 for a detailed description of how to do this. The makeall program,which constructs the second set of �les during the encoding process, will not work onundeclared positional attributes or corpora.After a positional attribute is declared in the registry, makeall must be run to constructthe necessary index �les. There are no options, and the only argument makeall accepts isthe symbolic name of the positional attribute for which the index �les shall be produced:makeall treebankThis will produce all missing �les for all positional attributes declared for the corpustreebank.If you only want to produce the �les for a single positional attribute, give the name of theattribute as an additional argument:makeall treebank pos(given that these symbolic names are those of the respective positional attributes). Notethat this call can be issued from any point in the �lesystem, since makeall looks up inthe registry to �nd the corpus data. Data is only written to the directory speci�ed in theregistry description �le. It is therefore a good idea to run makeall either on a very fastmachine or on a machine which locally holds the disks the corpus is stored on (to reducenetwork load in case of NFS-mounted �lesystems).Oliver Christ IMS Stuttgart January 27, 1997



IMS Corpus Toolbox: Administrator's Manual 26Note: \makeall" will currently try to create non-compressed �les for attributes whichalready have the complete data in compressed form. This is a bug and will be �xed in afuture release.makeall currently produces a lot of debugging output. This output is only important whenerrors occur or when the program has to be debugged.After running makeall on all positional attributes of a corpus, the corpus is ready for use.When trying to encode really big corpora (20 million words and above), encode andmakeall may have problems due to memory or swapspace limitations and yield error mes-sages like \can't allocate memory" or \not enough memory". These problems can onlybe solved by providing more swapspace to the machine the program is running on (or torun encode/makeall on another machine at your site which has enough swapspace). Theavailable swapspace is shown with the pstat -s command and should be enough to holdthe whole corpus data (see below in section 3.4). Ask your system administrator for furtherhelp.3.4 Space requirementsThis section gives some hints on how much space will be used by an encoded attributes.Currently, we only cover positional and structural attributes here.3.4.1 Positional attributesLet A be the sequence of items captured by the positional attribute. The length of thissequence, jAj, therefore is the number of elements of this sequence. Further, let D be theset of distinct strings encoded in A (the list of di�erent words, for example). Then, jDj isthe number of distinct words.Two numbers are important:� the number of items in the input �le (jAj) which is equal to the number of lines in theone-word-per-line input �le for encode (minus the number of structural annotationmarkers, if present). This number can, for example, be computed with the wc -lcommand (maybe pre-piped with a grep -v command to get rid of the structuralannotation markers);� the number of distinct items in the input �le (jDj) (this number can be computed byrunning the pipe sort -u | wc -l over the respective column in the one-word-per-line input text �le).Another important number is the space needed for the one-time representation of all dif-ferent items, which here is denoted S. This is the sum of the lengths of each di�erent wordplus one: S =Xs2D(strlen(s) + 1) = jDj+Xs2D strlen(s)Oliver Christ IMS Stuttgart January 27, 1997



IMS Corpus Toolbox: Administrator's Manual 27The adding of 1 is necessary since a null character ('\0') is added to each string. Thenumber is given by running the pipe sort -u | wc -c over the respective column in theinput �le.6Now, the size of one positional attribute (in bytes) can be computed as follows:Mp = 2(jAj � 4) + S + 4 � (4 � jDj) = 8jAj + 16jDj+ SThe size of the input text �le does not go into this formula, since it is not needed any moreafter encoding.For each positional attribute, this formula has to be evaluated again, since the numberof di�erent items in the attribute (jDj) and the space needed to represent them once(S) usually di�ers between several positional attributes (jAj must be constant for any twopositional attributes of a corpus). Since positional attributes but the word attribute usuallyhave a small number of distict values, the space needed to represent a positional attributemainly depends on its length, which is not very surprising. A less accurate number of spacerequirement can be roughly estimated by multiplying the size of the uncompressed inputtext �le(s) by 2.3.4.2 Structural attributesThe data of a structural attribute, for example sentence boundaries, is stored in a single�le, as an ordered sequence of corpus intervals (that is, pairs of corpus positions). So, thecomputation of the space needed to represent the information of one structural attribute Sis very simple: let S be the structural attribute. Then, jSj is the number of intervals storedin this attribute (\the number of sentences"), each being a pair of two corpus positions.Since each corpus position is stored as a 4-byte integer number, the space can be computedas follows: Ms = (jSj � 4 � 2) = 8 � jSjSo, if you want to represent 1 000 sentences, you need 8 000 bytes to store the data.

6The columns can be extracted from a multi-column �le with the cut program which is contained withinGNU's/FSF's set of text utilities, or with the awk utility.Oliver Christ IMS Stuttgart January 27, 1997



Chapter 4The corpus registryThe corpus registry holds, for each corpus being processed by the toolbox, a �le whichdescribes where in the �lesystem the various �les which build the corpus are stored. Addi-tionally, the registry holds a �le which describes who can access a local corpus from remotehosts and a �le which captures a log of all remote connections to local corpora. This chap-ter only describes the description �les for local corpora and the description �les for remotecorpora, the two additional �les which are necessary for remote connections are describedin chapter 5.The registry is simply a globally accessible directory, called the registry directory , and holds,for each corpus, a �le with the same name as the corpus name, in lowercase letters.1 Sucha �le is called the registry �le of the corpus. The contents of the �le, described in section4.2 below, de�ne which annotations are associated with the corpus and where the data isstored. An annotation which is not de�ned in the registry �le of a corpus cannot be accessedby any of the tools. Similarly, when an attribute is de�ned in the registry, it is supposed tobe accessible by all tools. It is within the responsibility of the corpus administrator (you!)to assure that all annotations de�ned in all registry �les are accessible, and that only thoseattributes are de�ned which are in fact accessible.Currently, there are some rules how to name the attributes of a corpus and how to namethe respective registry �les. These rules are described in the following section.As already mentioned in section 1.2 above, corpora exist where access has to be controlled.This issue is discussed in chapter 7 below.At the end of this chapter, section 4.5 summarizes the single steps which you should followwhen preparing and registering a new corpus.4.1 Some remarks about nomenclatureTwo simple rules have to be obeyed for the de�nition of names for corpora and attributes:1In Cqp, all corpus names are entered in upper case, but they are converted to lower case to load thecorrect corpus. 28



IMS Corpus Toolbox: Administrator's Manual 29corpus and attribute names must begin with a lowercase letter, and may befollowed by an arbitrary long sequence of lowercase letters or digits.By default, the tools expect the registry directory to be /corpora/c1/registry. Since atyour site this directory most probably does not exist, the default value can be overriddenby the environment variable CORPUS REGISTRY. Please do not add a slash at the end of thevalue of this variable. We suggest that either each user of the tools sets this environmentvariable in his or her .tcshrc or .cshrc shell initialization �le in his/her home directoryor that it is set in of the global shell initialization �les, which usually reside in /etc andare only writeable by the system administrator or the superuser. Please ask your systemadministrator for further help in case you shouldn't know where or how to set the variable.Additionally, almost all tools of the toolbox take the -r command line option to specify anon-default registry directory.4.2 The contents of a registry �leIn the registry �le, all attributes of a corpus are declared. Additionally, some \global"variables are set.A comment begins with a hash mark (#), everything up to the end of the line is not read.A registry �le may contain empty lines.The format of a registry �le is:<Header information and global variables><Attribute de�nitions>This order has to be kept in all registry �les. In the attribute de�nition section, the at-tributes may be declared in any order.4.2.1 The headerThe header consists of 4 declarations of values, each of which is preceded by the �eld name.The �eld names (keywords) are all uppercase.The �eld names are� a short (one-line) description of the corpus (keyword NAME). The �eld value is a stringenclosed in double quotes;� a unique identi�er (keyword ID). The �eld value is a symbol. Usually, the �eld valueshould be the same as the �le name of the registry �le;� optionally, the \home directory" of the corpus (keyword HOME). The �eld value is apath (not enclosed in double quotes);Oliver Christ IMS Stuttgart January 27, 1997



IMS Corpus Toolbox: Administrator's Manual 30� optionally, the path of the \info �le" of the corpus (keyword INFO). This text �leshould contain a description of the corpus, its annotations, perhaps administrativeinformation, etc. It is also a good idea to include a description of the tagset of thepart-of-speech annotation there, if the corpus is tagged.If the HOME �eld is missing, you have to specify the path for each attribute, so it is moreconvenient to de�ne this �eld when all corpus-related data �les are kept in a single directory.If the INFO �eld is missing, no corpus information can be displayed in Cqp or Xkwic (inCqp, this is done with the info command, in Xkwic, this �le is displayed when the Infobutton is selected in the corpus list).After the header, the set of corpus attributes (annotations) is declared. The di�erent typesof annotations are� positional attributes (section 4.2.2);� structural attributes (section 4.2.3);� mapping tables (section 4.2.4);� ngram tables (section 4.2.5);� alignment information (section 4.2.6);� dynamic attributes (section 4.2.7);As said before, all annotations may be declared in almost any order (but see the notes inthe case of mapping tables and bigram tables).4.2.2 Positional attributesA positional attribute is encoded as a set of seven �les, which have been described abovein section 3.2. These �les are called the components of a positional attribute. A registry �lede�nes, for each component of a positional attribute, the �le name in which the componentis stored. It is not necessary to manually set the names of all components since there aredefault rules how to compute unde�ned component �le names from the de�ned ones. Infact, we suggest to rely on the default names which encode assigns to the �les. Then, youdo not have to declare component paths at all.The declaration of a positional attribute looks as follows:ATTRIBUTE Name OptBodywhere Name is the identi�er for the attribute (like word, pos, lemma, : : : ). The OptBody isoptional and is only needed when you have to de�ne non-default �le names.When you use the body, it can be one of the following:� a de�nition of the component paths, CompPathSpec;Oliver Christ IMS Stuttgart January 27, 1997



IMS Corpus Toolbox: Administrator's Manual 31� or the declaration that the attribute is found on a remote host, RemoteSpec;� or a path which overwrites the HOME �eld of the corpus and says that all componentsare stored at a di�erent place, AltPath.The RemoteSpec currently is not supported, since in the actual distribution, access toremotely stored corpora is disabled. When the AltPath declaration is used, it declares apath di�erent of the corpus path for this special attribute.The component path speci�cationThe component path speci�cation, CompPathSpec, must be enclosed in braces f : : : g.Within these braces, a sequence of component name/path speci�cation pairs is listed. Eachcomponent name may only occur once:fComponentID PathSpec: : :gOne component is \virtual" (DIR) and doesn't describe �lenames but rather denotes the\home directory" of the attribute. Two other virtual components are ANAME, the name ofthe attribute just being de�ned, and APATH, which is the \home directory" of the corpus,which defaults to the value of the value of the HOME �eld of the header (if present).The PathSpec is a standard path, in which Macros may be used. Such a macro is startedwith a dollar sign $ and directly followed by a component name. For example, the macro$ANAME represents the value of the attribute name. Macro values may be used in pathspeci�cations. For example,$APATH/$ANAME.fstands for the concatenation of the value of the APATH variable (usually the corpus homedirectory), followed by a slash, followed by the value of the ANAME variable, and then followedby .f.In general, it is possible to refer to the value of any component by pre�xing its componentidenti�er with a dollar sign ($). Thus, when a component value is de�ned, it is possible touse the values of previously de�ned components in the de�nition. It is an error when yourefer to a component value which is not yet de�ned.The following table lists the components, the component identi�ers and the default valueor macro through which the (default) value is computed:
Oliver Christ IMS Stuttgart January 27, 1997



IMS Corpus Toolbox: Administrator's Manual 32Component Component ID Default Rule/ValueDirectory DIR $APATHCorpus CORPUS $DIR/$ANAME.corpusReversed Corpus REVCORP $CORPUS.revRevCorpusIdx REVCIDX $CORPUS.rdxCorpusFreqs FREQS $CORPUS.cntLexicon LEXICON $DIR/$ANAME.lexiconLexicon Index LEXIDX $LEXICON.idxLexicon Sortindex LEXSRT $LEXICON.srtThis table also shows the component path values when there is no component path spec-i�cation at all. The APATH �eld defaults to the HOME directory of the corpus (the rootdirectory, /, is assumed if this HOME speci�cation is missing in the header). The name ofthe attribute being de�ned, ANAME, is always known. Then, the other components get theirpath values by the rules listed in the table.You can, of course, set all component path values as you like, but it is strongly recommendedto rely on the default values.Note that the word attribute always must be de�ned, and that an attribute with the nameword must be present in every corpus declaraion (registry �le).Let's look at a small example. The following registry �le only de�nes the positional attributeword:NAME "Penn Treebank"ID upHOME /corpora/kwic/upATTRIBUTE wordDue to the default rules, the paths of the word attribute components have the followingvalues: Component ValueDirectory $APATH = /corpora/kwic/upCorpus $DIR/$ANAME.corpus = /corpora/kwic/up/word.corpusReversed Corpus $CORPUS.rev = /corpora/kwic/up/word.corpus.revRevCorpusIdx $CORPUS.rdx = /corpora/kwic/up/word.corpus.rdxCorpusFreqs $CORPUS.cnt = /corpora/kwic/up/word.corpus.cntLexicon $DIR/$ANAME.lexicon = /corpora/kwic/up/word.lexiconLexicon Index $LEXICON.idx = /corpora/kwic/up/word.lexicon.idxLexicon Sortindex $LEXICON.srt = /corpora/kwic/up/word.lexicon.srtPlease note that no checking is done with respect to �le name collisions. If you use thesame component path for di�erent components (or for components of di�erent attributesof di�erent corpora etc.), the system will crash certainly, and also data damage may result.The following example shows a declaration of a corpus with the \old" naming conventions:NAME "Getaggter BZK (``Neues Deutschland'')"ID bzkHOME /corpora/kwic/bzk-taggedOliver Christ IMS Stuttgart January 27, 1997



IMS Corpus Toolbox: Administrator's Manual 33ATTRIBUTE word{ CORPUS $APATH/corpusLEXICON $APATH/lexicon}ATTRIBUTE pos{ CORPUS $APATH/corpus.posLEXICON $APATH/pos.lexicon}Here, the paths of the word attribute components have the following values:Component ValueDirectory /corpora/kwic/bzkCorpus /corpora/kwic/bzk/corpusReversed Corpus /corpora/kwic/bzk/corpus.revRevCorpusIdx /corpora/kwic/bzk/corpus.rdxCorpusFreqs /corpora/kwic/bzk/corpus.cntLexicon /corpora/kwic/bzk/lexiconLexicon Index /corpora/kwic/bzk/lexicon.idxLexicon Sortindex /corpora/kwic/bzk/lexicon.srtThe paths of the pos attribute components have the following values:Component ValueDirectory /corpora/kwic/bzkCorpus /corpora/kwic/bzk/corpus.posReversed Corpus /corpora/kwic/bzk/corpus.pos.revRevCorpusIdx /corpora/kwic/bzk/corpus.pos.rdxCorpusFreqs /corpora/kwic/bzk/corpus.pos.cntLexicon /corpora/kwic/bzk/pos.lexiconLexicon Index /corpora/kwic/bzk/pos.lexicon.idxLexicon Sortindex /corpora/kwic/bzk/pos.lexicon.srtThe alternate path speci�cationIn the alternate attribute path speci�cation, AltPath, you \overwrite" the default APATHvalue. The component path values are computed by the default rules. With the AltPathspeci�cation, you \move" the whole set of attribute components to another directory, whilekeeping the standard name conventions.Example:NAME "Wall Street Journal, very large"ID wsjHOME /corpora/kwic/wsjATTRIBUTE wordATTRIBUTE pos /var/space/kwic/wsj.posHere, the word attribute is on /corpora/kwic/wsj, but the set of components which belongto the pos attribute are stored on another �le system, perhaps due to limitations of diskspace.Oliver Christ IMS Stuttgart January 27, 1997



IMS Corpus Toolbox: Administrator's Manual 34The remote speci�cationis currently disabled, so we do not have to write anything about it here: : :4.2.3 Structural attributesStructural attributes also have components, but their values cannot be changed in theregistry �le. So, the declaration of a structural attribute is very simple:STRUCTURE Name OptStorageSpecSTRUCTURE is the keyword, and Name is the name of the structure being de�ned. Optionally,this declaration may be followed by a storage speci�cation, OptStorageSpec:� this can either be a path, which \moves" the attribute data to another directory likethe AltPath speci�cation for positional attributes (the default is to store the data inthe corpus HOME directory);� or a remote declaration, which is currently disabled and therefore doesn't need to becovered here.Normally, the declaration of a structural attribute simply is a sequence of the keywordSTRUCTURE, followed by the name of the structure:...STRUCTURE sSTRUCTURE pSTRUCTURE articleSTRUCTURE npStructural attributes are stored in only one �le, and the name of this �le is derived by therule $APATH/$ANAME.rng (where $APATH defaults to the value of HOME).4.2.4 Mapping tablesThe declaration of a mapping table looks as follows:MAPTABLE SourceName TargetName OptStorageSpecThe OptStorageSpec is the same as in the case of structural attributes above, and has thesame meaning.The keyword MAPTABLE introduces the declaration of a mapping table. Then, the namesof two positional attributes follow. These positional attributes must already be declared(so the declaration is not order-independent in this case). Currently, mapping tables areunidirectional, that is, you have to compute and declare mapping tables in both \directions"if you need them (for example, from pos to word as well as from word to pos).Example declaration:...MAPTABLE word posMAPTABLE pos wordOliver Christ IMS Stuttgart January 27, 1997



IMS Corpus Toolbox: Administrator's Manual 354.2.5 ngram tablesThe declaration of a mapping table looks as follows:NGRAM PAName n OptStorageSpecThe OptStorageSpec is the same as in the case of structural attributes above, and has thesame meaning.The keyword NGRAM introduces the declaration of a ngram table. Then, the name of apositional attribute follows, which already must be declared earlier in the registry �le. ThePAName is then followed by the \dimension" of the table, n. Currently, only bigram tablesare supported, so that this value n always must be 2.Example declaration:...NGRAM word 2NGRAM pos 24.2.6 Alignment attributesWith an alignment declaration, it is expressed that the corpus where this attribute is beingdeclared, is aligned to another corpus which also has its registry �le. The declaration is asfollows:ALIGNED CorpusName OptStorageSpecThe OptStorageSpec is the same as in the case of structural attributes above, and has thesame meaning.The CorpusName must be the name of an existing (registered) corpus.Alignent tables are unidirectional. So, if the other aligned corpus also is aligned to thecorpus currently being de�ned, the alignment in the other direction must be declared inthe registry �le of the other corpus.Example declaration:...ALIGNED hansard-f...4.2.7 Dynamic attributesDynamic attributes are declared like functions: they have a name, an argument list, and areturn value type. Additionally, it must be declared how the value is computed from theexternal knowledge source.The declaration of a dynamic attribute looks as follows:Oliver Christ IMS Stuttgart January 27, 1997



IMS Corpus Toolbox: Administrator's Manual 36DYNAMIC Name ( ArgList ) : RVType ShellCallThe Name is the name of the dynamic attribute, following the standard naming conven-tions. After the name, the argument list is written in parentheses. The argument list is asequence of comma-separated type identi�ers. Currently, the type identi�ers STRING (forcharacter string arguments), INT (for integer type arguments) and POS (for corpus-positionarguments) are supported. The return value type, RVType, also must be one of these typeidenti�ers.The ShellCall is a string, enclosed in double quotes. It de�nes how the return value iscomputed by a call to an external tool. The value computed by the external tool (whichis expected to occur on the stdout of the external tool after its termination) is coerced tothe return value type, whether this makes sense or not. So it is your task to make sure thatthe external tool computes information which can be coerced to the return value type.In the ShellCall , you refer to the arguments of the function with $1 for the �rst argument,$2 for the second, and so on. It is an error when argument numbers are used which arehigher than the number of arguments declared. It is not an error, though, when declaredarguments are not used in the ShellCall .Example:DYNAMIC wndist(STRING,STRING,STRING):INT "/usr/local/bin/wnreq -s '$1' '$2' '$3'"Here, the dynamic attribute wndist takes three STRING-type arguments and returns anINT-type value. The value is computed by calling the external program wnreq with someparameters and the (actual) arguments glued into the shell call.When the value of a dynamic attribute is requested, the actual parameters of the function(which must agree with the declared argument types) are glued into the ShellCall at thepositions indicated by the argument references ($n). Then, this shell call is evaluated (viathe pipe mechanism of Unix). It can yield to errors when arguments are passed whichcontain characters which are interpreted by the shell. These should either be excluded frompassing through constraints in the query, or you have to design your shell call carefully(for example, by surrounding the variable references with single quotes, although this onlypartially helps). In a future release of the external knowledge source interface, perhaps wewill support argument passing to the stdin of the external tool, so that shell evaluationdoes not take place any more.The pipe to the external program is not kept open (we will �x that perhaps in a later re-lease), so that the external tool is invoked for each value request. Two things are important:� �rst, the number of dynamic calls must be minimized { use external information inqueries carefully! Batch querying should also be considered;� the startup time of the external tool should be minimized. It should only load aslittle data as necessary, and the time necessary to compute the requested informationshould be small. This can best be achieved by designing a client-server architecture,so that the server only starts once, and small clients (like wnreq in the example above)do not have to load large amounts of data.Oliver Christ IMS Stuttgart January 27, 1997



IMS Corpus Toolbox: Administrator's Manual 37Please remember that the external tool interface as well as dynamic attributes in generalare experimental tools, and are not optimized towards e�ciency.4.3 Registration of remote corporaRemote corpora are currently disabled. So just skip the crap in this section.When corpora are stored remotely and have to be accessed via the network, they aredeclared di�erently than local corpora. For each remote corpus, a registry �le similar to a\standard" registry �le has to be created. This �le declares that a corpus (or a positionalattribute) is stored remotely. It must only contain the �elds NAME, ID and REMOTE. NAME andID have the same meaning like described above and are optional. The value of the REMOTE\component" is the name of the remote host which shall be connected when the corpus isaccessed. No other component values must appear in the registry �le for remote corpora.Here is an example for a full and valid remote declaration:REMOTE maple.gardeners.edu4.4 A last exampleWe hope that the format of the registry �le is simple enough to understand it without toomany explanations after you are fairly familiar with it. So just have a look at this lastexample.NAME "Hansard-Corpus (English Part)"ID hansard-eHOME /corpora/kwic/hansard-eINFO /corpora/kwic/hansard-e/.infoATTRIBUTE word{ CORPUS $APATH/corpusLEXICON $APATH/lexicon}ALIGNED hansard-fSTRUCTURE sSTRUCTURE npATTRIBUTE posATTRIBUTE lemmaMAPTABLE word posMAPTABLE pos wordNGRAM word 2NGRAM pos 2DYNAMIC wndist(STRING,STRING,STRING):INT"/corpora/bin/wnreq -s '$1' '$2' '$3'"Oliver Christ IMS Stuttgart January 27, 1997



IMS Corpus Toolbox: Administrator's Manual 384.5 Steps to followNow, what are the steps to follow if you have to register a new corpus?� First, try to estimate the space requirements of the encoded corpus and �nd a place forit in your �le system. Consider splitting of attributes or single attribute componentsif you do not �nd enough place on a single �le system;� make a new directory for the data of the new corpus. If there is place enough, tryto put all data in this directory. Then, you will only have to set the HOME �eld ofthe registry �le, and all other �le names are then computed by the default rules.Remember that encode, the �rst step during corpus preparation, puts all data �lesin a single directory, so at least for this step there must be enough space on the disk.� If you do not �nd enough space, you have to split the (positional) attributes betweenseveral �le systems. Then, you will have to encode the set of positional attributes inseveral steps (by using the -p option for encode and only encoding one column of theinput �le in a single run of encode).� Run encode, and let it write all corpus data in the new directory, if there is enoughplace. You may also use /tmp as an intermediate place to hold the data, and thenmving the data �les to their proper destinations.� Register the new corpus: give it a new, unique name and create the registry �le.Declare all annotations which have been produced by the run of encode. Rememberthat annotations can be added (or removed) at any time.� If the corpus is registered, run describe-corpus with the name of the new corpus.This will show you whether the registry �le is syntactically correct, which attributesare declared, where they will be stored, and what their status is. Check this listcarefully.� After all positional attributes have been encoded (either in a single step or in severalsteps), run makeall once, which will create all components of all positional attributeswhich have not yet been produced by encode.� create and register additional attributes (mapping tables, bigram tables, alignmentdata, : : : ) with the respective utilities or by other means;� You may check your corpus again with describe-corpus.� Check the �le permissions of all �les produced by encode and makeall. Data �lesand the registry �le should have the permission 444, and the directories (the registrydirectory and the data directory) should be readable (security and access control iscovered in chapter 7).� StartCqp orXkwic, and check whether the new corpus appears in the list of availablecorpora.Good luck!Oliver Christ IMS Stuttgart January 27, 1997



Chapter 5Remote access { client and serversetup
In the current distribution, the corpus data server is not included, so that the IMScorpus toolbox does not support remote corpus data access at the moment. It was tooslow anyway: : :This chapter explains how corpora are prepared to allow remote access. To \export" acorpus, it must be stored locally and be accessible by local users (that is, it must bedeclared in the registry). Basically, on each machine where corpora are stored which areto be exported to remote users, a server process must run which waits for corpus datarequests from \outside" and serves these requests, after checking whether the remote useris authorized to access the respective corpus. It should be clear that remote access tocorpora is the most vulnerable point with respect to copyright and access control issues.We therefore suggest that remote access is only granted for either \free" resources or whenyou have fully understood how to control remote access.Remote connections can be built only if a server is running on the host on which a corpusis stored. Almost all tools (but neither encode nor makeall) have built-in remote accesscapabilities without the need for special tools or setups. Another access criterion is whetherthe user trying to access a corpus remotely is allowed to access the corpus at all. Thefollowing section 5.1 describes how to grant access to corpora, and section 5.2 describeshow to run the corpus data server.5.1 The .rat and .ratlog �lesRemote access to corpora which are stored physically (either on local disks or on NFS-mounted disks) on the same machine the server is running on is controlled by a �le called.rat (\remote access table") in the registry directory. This �le holds an arbitrary numberof lines, each being a pair of regular expressions based on the POSIX EGREP syntax1. The1A description of this syntax can be found, for examle, in the documentation of the FSF/GNU regexpackage. 39



IMS Corpus Toolbox: Administrator's Manual 40�rst regular expression in each line describes symbolic corpus names as they occur in theregistry, the second regular expression describes who has access to the positional attributesdescribed in the �rst expression.When a corpus is to be accessed remotely, the server goes through all lines in the remoteaccess table and checks whether the name of the corpus matches the �rst expression of theline. If so, it is checked whether the name of the user at the remote host (user@host) ismatched by the second regular expression. If so, access is granted and no more lines in thetable are checked. If not, the next line is tried. If no line is matched, access is denied.The .rat �le could, for example, look as follows:treebank.* (joe|mary|chris)@(rose|tulip)\.gardeners\.edutreebank.* jack@.*up.* (joe|jack)@.*\.gardeners\.edu.* corpus_adm@maple\.gardeners\.eduThe �rst line grants access to all positional attributes de�ned for the corpus treebankto Joe, Mary and Chris when they try to access the corpus from one of the hostsrose.gardeners.edu or tulip.gardeners.edu. Note that the dot, if not pre�xed by aslash, matches every character and has to be escaped with a slash when a literal dot is ex-pected. The second line grants access to the same positional attributes for Jack, no matterfrom which host he tries to access the corpus. Such a line should not occur in your .rat �le,since there are many Jacks out there and you surely don't want that all of them probablyget access to your corpus data. You should always try to specify the users and hosts fromwhich access is to be granted as precisely as possible. The third line grants access to allup attributes for Joe and Jack, no matter from which host in the gardeners.edu domainthey are connecting. The fourth line, also a little bit too general to my taste, grants accessto all corpora for the user corpus_adm@maple.gardeners.edu.Again, a \#" in the �rst column of the .rat �le indicates a comment which extends up tothe end of the line.When a corpus has other positional attributes beyond the \word" attribute, it is importantto allow remote access to all positional attributes assigned to the corpus (if this accessshould be possible over the network). This is achieved through the .* at the end of the �rstexpression of each line which describes the positional attributes for which access should begranted.The .ratlog �le { also residing in the registry directory { logs all requests for remoteaccess to corpora and whether a connection request was granted or not. Entries in this �lelook, for example, as follows:CDS on maple at Thu Jan 20 16:47:27 1994login request from joe@tulip.gardeners.edu for corpus treebank (granted)CDS on maple at Thu Jan 20 16:52:03 1994login request from bill@tulip.gardeners.edu for corpus treebank (denied)
Oliver Christ IMS Stuttgart January 27, 1997



IMS Corpus Toolbox: Administrator's Manual 415.2 How to start the corpus data serverStarting the server is quite simple: you only have to start the program cds (corpus dataserver) as a background process. There are, however, some points to be respected:� only one cds process must run on a host;� the cds process must be started by the same person who owns the .rat and the.ratlog �le. The �le .rat must be present as described in the previous section. Ifthe .ratlog �le doesn't exist when cds is started, it can be created with the touchcommand (although cds tries to create the �le in case it should not yet be present).Remote access to corpora is slow. We only implemented it for testing purposes, so don'texpect it to work as fast as the access to locally stored corpora.

Oliver Christ IMS Stuttgart January 27, 1997



Chapter 6Utilities and debugging toolsAdditionally to the encode and makeall utilities introduced in chapter 3, there are someother utilities for the construction of the various attributes or the display of the informationcaptured by these attributes. These tools are described in this section.Unless otherwise indicated, for each of the tools mentioned in this chapter Unix manualpages have been written and should be available at your site.This chapter is \under construction", so please refer to the manual pages of the tools.6.1 Decoding of corpus and attribute information6.1.1 Decoding of corpus information: decodedecode decodes (that is, prints encoded attribute values of) a registered corpus encodedwith encode and makeall and prints the data textually on stdout. The user can select theattributes which are printed, as well as the start and end corpus positions. Alternatively,corpus positions may be piped into decode in order to print the values at these positions.The attribute values are separated by a tabulator character and are preceded by the at-tribute name. The order in which the attribute values are printed is the same as the orderof the corresponding command line arguments. At least one attribute must be speci�edwith one of the options.6.1.2 Decoding of word lists: lexdecodelexdecode prints the values of a positional attribute of a registered corpus encoded withencode and makeall and prints the attribute values textually on stdout. If no positionalattribute name is given via the -P option, the values of the standard positional attributeword are printed. Additionally, information about the absolute frequency of the values incorpus can be printed and/or the values can be printed in lexically ascending order.42



IMS Corpus Toolbox: Administrator's Manual 436.2 Creation and Decoding of Bigram Tables6.2.1 Creation of bigram tables: gen-bigramsgen-bigrams computes bigram tables for a positional attribute of a corpus in a certainwindow.gen-bigrams can use two di�erent algorithms to compute the table: the sequential method(which can be selected through the -S option and is the default) sequentially shifts thecorpus words and increments the counts, whereas the reversed method (selectable withthe -R option) works via the reversed index.When a bias is given, only bigram cells with a higher count than this bias are stored. Whena minimal frequency is given, bigrams are only computed for those words which have atleast the frequency mfreq. In this case, the computation is always done via the reversedcorpus.6.2.2 Decoding of bigram tables: decode-bigramsdecode-bigrams prints the contents of the bigram table associated with a positional at-tribute of a corpus in the window size. (which currently always is 2, but has to be given asan argument).By default, the table is printed in the internal form, but with the -t option, a more readable,tabular output is produced. Then, the window width and height can be altered with theappropriate parameters.6.3 Creation and Decoding of Mapping Tables6.3.1 Creation of mapping tables: gen-mapping-tablegen-mapping-table computes mapping tables from the positional attribute sourcePA tothe positional attribute targetPA of corpus The tables are direction-speci�c { if you wantto have mapping tables in the other direction, you must create them, too.gen-mapping-table can use three di�erent algorithms to compute the table: the standardmethod (which can be selected through the -S option and is the default) allocates alarge table and runs sequentially through the corpus and increments the counts. The treecomputation (selected with the -T option) internally uses a tree-like structure, thus speedingup search. Third, the direct method (selected with the -D option) allocates a huge tablewith space for all possible cells, it can only be used for small tables (less than 10MB size),but should be the fastest method. The table size is computed by multiplying the numberof values of the two attributes, times 4 (space for one integer).
Oliver Christ IMS Stuttgart January 27, 1997



IMS Corpus Toolbox: Administrator's Manual 446.3.2 Decoding of mapping tables: decode-mapping-tabledecode-mapping-table prints the contents of the mapping table associated with the sourcepositional attribute sourcePA and the target positional attribute targetPA of the corpuscorpusBy default, the table is printed in the internal form, but with the -t option, a morereadable, tabular output is produced. By default, the whole table is printed, but by usingthe -p option, decode-mapping-table reads the sets of values of the source attributefrom stdin. Alternatively, a regular expression pattern can be given as the last argument.Then, the mappings are only displayed for those source values which match the pattern.6.4 General utilities6.4.1 Comparing word lists and corpora: check-coveragecheck-coverage is a program which reads a list of words either from stdin (default) orfrom the �le speci�ed with the -f option. check-coverage then, for each word, looks in thelist of corpora speci�ed in the corpus-names list (maximum is 32 corpus names) whetherthe word occurs in the word attribute of these corpora. If not, the word is printed to stdout.If the word occurs in one of the corpora and if the -s option (\print success") is given,matches are also written to stdout.6.4.2 Converting internal integers to readable numbers: itoaitoa reads, from stdin or from each of the named �les, a sequence of integers in the internal(machine-dependent) data format (4 byte integers) and writes each number textually tostdout, one number per line.6.4.3 Converting readable numbers to internal integers: atoiatoi reads, from stdin or from each of the named �les, a sequence of numbers represented asdigit sequences. The input must be in a one-number-per-line format and must only containdigits and newlines. The numbers (not the individual digits, of course) are then written tostdout as a sequence of 4-byte ints, in the internal (machine-dependent) data format. Thefunction is similar to the atoi(3) function of the C library.
Oliver Christ IMS Stuttgart January 27, 1997



Chapter 7Access control and security issuesThis chapter describes how to control access to the corpus data. Access control is an im-portant issue when corpora with restricted access are provided, for example the TIPSTERcorpora available from the Linguistic Data Consortium (LDC).7.1 Controlling local access to corporaAccess to corpus data currently can only be controlled by restricting the readability of theregistry directory, the registry �les in the registry directory and the directory the corpusdata is stored in by setting the user and group IDs and the access permissions of the �lesand directories.The easiest way to control access is by properly setting the read permissions of a registry�le. If someone cannot read a registry �le, he or she cannot access the corpus by way ofits symbolic name. However, independent of the readability of the registry �le, a user can�gure out where the components of a corpus are stored and { with some knowledge of theinternal corpus representation or with the help of the utilities mentioned in the previouschapter 6 { can reconstruct the corpus text from the encoded data unless the componentsare read-protected. We therefore recommend that the access restrictions of the directorythe encoded data is stored in (user, group and r/w permissions) are the same as the accessrestrictions of the registry �le. When a corpus is more or less \public" in the sense that itsuse is either free or restricted to your institution, access control is probably not necessary.Further, we strongly recommend that� the registry directory is owned by the corpus administrator;� the registry directory is readable by everyone but writeable only for the corpus ad-ministrator (mode 755);� the registry �les in the registry directory are only writeable by the corpus adminis-trator, and readable exactly by those users which may access the corpus;45



IMS Corpus Toolbox: Administrator's Manual 46� the directories the data of a positional attribute is stored in (\data directories") arewriteable only by the corpus administrator;� the data directories have the same group ID, owner ID and read permissions as theregistry �le which describes the attribue (plus the necessary \exec" bits);� the data �les (components) have mode 444 (are not writeable by anyone). For changesor updates, only the corpus administrator may change the access restrictions of a �leor a directory.Additionally, the read/exec permissions of tools other than the query tools (Xkwic, Cqp,print-aligned) may be restricted to the corpus administrator. The utility lexdecode,however, should be executable by all corpus users since it produces useful frequency in-formation which doesn't allow the reconstruction of the corpus text proper. We stronglyrecommend, however, that execution permission for the corpus data server (cds) is re-stricted to only the corpus administrator. None of the programs should be setuid.Since the decoding utilities permit to textually decode a corpus with all its information,care should be taken that unauthorized users (guests with temporary accounts, for example)cannot use these tools. One idea, for example, is to set the setgid bit of the query tools(Cqp, Xkwic) to the group id under which the corpus data, the registry �les etc. arestored (the top directory su�ces). The corpus data and the registry �les (or the directoriesin which they are stored), then, should be readable only for members of this \corpus group",but not readable for members of other groups (o-rX). The decoding utilities must not besetgid for the corpus group. By this strategy, the corpus data can be accessed via the querytools, but not via the decoding utilities if the user does not belong to the group which hasaccess to the corpus registry �les by the normal group permissions.7.2 Controlling remote access to corporaAs mentioned in chapter 5 above, remote access is a vulnerable point with respect toaccess control. With some knowledge about the internals of the tools, it would be possiblefor almost everyone to fake his or her identity and to gain illegal access to your corpora.Although this is not a trivial task, you should keep in mind that it is at least possible. Theonly way to prevent this is not to export corpora at all, that is, not to run a corpus dataserver (and to prevent other users to start it as well). Additionally, it is good policy tocheck the .ratlog �le frequently in order to gain an overview which corpora are accessedby whom.The .rat and the .ratlog �les should be owned by the corpus administrator and haveaccess mode 600, that is, readable and writeable only by the owner (i.e., the corpus admin-istrator).Remember that the corpus data server is usually run by the corpus administrator. There-fore, the server process has access to all registry �les and to all positional attributes de�nedfor all corpora. Access to corpora from \outside" is therefore only controlled by checkingwhether the corpus/user pair is contained in the remote access table (.rat).Oliver Christ IMS Stuttgart January 27, 1997



IMS Corpus Toolbox: Administrator's Manual 47Therefore, the entries in the .rat �le must be carefully designed and no one but the corpusadministrator should be able to read or write the .rat �le. You should have a fair knowledgeof regular expressions and take care that the expressions are not \overgenerating". If youare not sure about which user names or attributes are matched by your regular expressions,we suggest that you best enumerate all attribute/user pairs with their full names and notto use \wildcards" (.), the kleene star (*) or the plus construct (+).And, lastly, don't broadcast that you permit access to your corpora too widely or to peoplewho aren't in the list of intended users. Just to be on the safe side : : :

Oliver Christ IMS Stuttgart January 27, 1997



Appendix AHardware and operating systemrequirementsThe tools have been developed and tested on the following development platform:� Compiler: gcc V2.5.7 on SunOS Release 4.1.3� Window System: X Window System (tm), Version 11, Release 5 (X11R5)� Widget set: OSF/Motif (tm) V1.2� Hardware: Sun-4M/Sparcstation 3 (2 CPUs, 64MB memory, 50MHz)We currently only deliver binary �les for this platform. No other systems are supported. Inorder to run the tools, at least 32MB of memory are recommended. One CPU is of coursesu�cient.

48



Appendix BReused software packages andcopyright noticesIn the implementation of our system, we made use of the following software packages. Wethank the providers of the software and include their disclaimers and copyright notices.B.1 The regular expression matcher by Henry SpencerCopyright (c) 1992 Henry Spencer.Copyright (c) 1992, 1993The Regents of the University of California. All rights reserved.This code is derived from software contributed to Berkeley byHenry Spencer of the University of Toronto.Redistribution and use in source and binary forms, with or withoutmodification, are permitted provided that the following conditionsare met:1. Redistributions of source code must retain the above copyrightnotice, this list of conditions and the following disclaimer.2. Redistributions in binary form must reproduce the above copyrightnotice, this list of conditions and the following disclaimer in thedocumentation and/or other materials provided with the distribution.3. All advertising materials mentioning features or use of this softwaremust display the following acknowledgement:This product includes software developed by the University ofCalifornia, Berkeley and its contributors.4. Neither the name of the University nor the names of its contributorsmay be used to endorse or promote products derived from this softwarewithout specific prior written permission.THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' ANDANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THEIMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSEARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLEFOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL49



IMS Corpus Toolbox: Administrator's Manual 50DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODSOR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICTLIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAYOUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OFSUCH DAMAGE.@(#)regex.h 8.1 (Berkeley) 6/2/93

Oliver Christ IMS Stuttgart January 27, 1997



Bibliography[Christ, 1993] Oliver Christ. The Xkwic User Manual. Institut f�ur maschinelle Sprachver-arbeitung, Universit�at Stuttgart, 1993.[Christ, 1994] Oliver Christ. A modular and exible architecture for an integrated cor-pus query system. In Proceedings of COMPLEX'94: 3rd Conference on ComputationalLexicography and Text Research (Budapest, July 7{10 1994), pages 23{32, Budapest,Hungary, 1994. CMP-LG archive id 9408005.[Schulze and Christ, 1994] Bruno M. Schulze and Oliver Christ. The CQP Users's Manual.Institut f�ur maschinelle Sprachverarbeitung, Universit�at Stuttgart, Version 1.0d, May1994. (Revised October 1994).[Schulze, 1994] Bruno M. Schulze. Entwurf und Implementierung eines Anfragesystemsf�ur Textcorpora. Diplomarbeit Nr. 1059, Universit�at Stuttgart, Institut f�ur maschinelleSprachverarbeitung (IMS) and Institut f�ur Informatik, January 1994. (In German).

51


