
A Modular and Flexible Architecture for an IntegratedCorpus Query SystemOliver ChristUniversit�at StuttgartInstitut f�ur maschinelle Sprachverarbeitung (IMS-CL)Azenbergstr. 12D 70174 Stuttgartoli@ims.uni-stuttgart.deAppears in: Proceedings of COMPLEX'943rd Conference on Computational Lexicography and Text ResearchBudapest, Hungary, July 7{10, 1994, pp. 23{32 �AbstractThis paper describes the architecture of an integrated and extensible corpus querysystem developed at the University of Stuttgart and gives examples of some of themodules realized within this architecture. The modules form the core of a corpus work-bench.Within the proposed architecture, information required for the evaluation of queriesmay be derived from di�erent knowledge sources (the corpus text, databases, on-linethesauri) and by di�erent means: either through direct lookup in a database or bycalling external tools which may infer the necessary information at the time of queryevaluation. The information available and the method of information access can bestated declaratively and individually for each corpus, leading to a
exible, extensibleand modular corpus workbench.1 IntroductionWith the availability of tagged and annotated text corpora, corpora cannot be regardedany more as mere sequences of words. Additionally, more and more linguistic knowledgebases become available and provide additional knowledge about words (MRDs, on-line the-sauri like WordNet [Miller et al., 1993], morphological knowledge bases like the CELEXdatabase [Baayen et al., 1993] ,: : :). When using and querying corpora, all this knowledgeshould be usable within a corpus query system in order to enable the lexicographer orlinguist to express the linguistic properties of the examined phenomenon as precisely aspossible (in order to reduce the amount of data which has to be browsed manually), nomatter how the knowledge necessary to evaluate the query is stored or by which means itis derived.�CMP-LG eprint archive id: 9408005 1

When a corpus is thus regarded as a structured object composed of several di�erentknowledge sources, a problem arises because di�erent knowledge sources require possiblydi�erent access methods. Furthermore, for many types of information, it is useful not tostore the information physically at all but to compute it at the time of query evaluation.For example, bigram tables for large corpora might grow too big to be held online. Au-tomatically assigned part-of-speech tags, on the other hand, might either be stored in adatabase when they are regarded as \stable" or might be computed at the time of queryevaluation by a tagging tool.Additionally, a corpus query system need not necessarily be used only by human users:a parser might consult a corpus annotated with parse trees (treebank) to disambiguatebetween several syntactic structures by looking up similar, but disambiguated syntacticpatterns; a generator might use a semantically annotated corpus to �lter lexical preferences.These di�erent knowledge sources, access strategies and usage situations are best sup-ported by a hierarchical, modularized system architecture where the single modules can becombined in di�erent ways to adapt the system to various usage situations.We therefore designed and implemented the following architecture: To abstract as muchas possible from the di�erent storage properties, the data access was split between a \logicaldata access layer", which is independent of data access methods and storage properties, anda \physical data access layer", which is the data-oriented interface to the knowledge sourcesand which is responsible for data access and network-based corpus data interchange. Theadaptation of the system to di�erent usage situations is achieved through di�erent interfacesto the logical access layer, but tools may also request data from the physical layer directly.A general-purpose query language, which treats the whole corpus as a structured knowledgesource and allows to express queries involving all knowledge sources declared for a speci�ccorpus (no matter how the knowledge is accessed physically), was added to the logicalaccess layer. This architecture is sketched in �gure 1.
Physical Access Layer

Logical Access Layer

Query

Result

Data Access

Direct Access

Applications, Tools

Remote Connections

Data Base(s)

Corpus

local remote

Dynamic Knowledge
Sources

Indexed FilesFigure 1: The modular architecture of a
exible corpus query systemIn the following sections, these modules are described in more detail. Section 2 outlinesthe physical layer. In section 3, the logical layer and the query language are described. One2

usage situation is the interactive use of the query system. For this purpose, presentationand interaction tools have been built which are explained in section 4. In section 5, somedirections of our further work are described. The paper ends with a short conclusion insection 6.2 The physical layerThe task of the physical layer is to provide a uniform interface between the logical layerand the �les, databases or tools which \store" the information the corpus is built of. Thephysical layer therefore encapsulates knowledge about �le and tool access and provides aninterface which is independent of the storage device and the information type (static vs.dynamic). Due to its proximity to the physical corpus representation, the physical layeralso provides methods for corpus management, bigram table creation and management,corpus preparation and indexing, frequency counting etc.Currently, the physical layer supports the following types of corpus annotations:� positional attributes are attributes where a (string) value is assigned to (almost) everycorpus position. The sequence of words the corpus text is built of is one example ofa positional attribute. Other examples are part-of-speech tags and base forms (see�gure 2). An arbitrary number of positional attributes can be assigned to a corpus;
Pierre Vinken , 61 years old

0 1 2 3 4 5 n-2 n-1

blessing .

......:

word:

pos: N N NUM N ADJ N IPIPFigure 2: Positional attributes: Values are associated with corpus positions� structural attributes are attributes which capture information about sentence bound-aries, article boundaries etc. Currently, recursive structures (like NPs with embeddedNPs) cannot be represented. The number of structural attributes is not limited;� bigram tables are related to one of the positional attributes of a corpus and holdinformation about the absolute number of adjacent occurrences of two values of theattribute within a given window size1. Note that, for example, both word bigrams aswell as part-of-speech-tag bigrams can be represented;� alignment information can be added to a pair of parallel corpora (which are, roughlyspeaking, translations of each other) to represent information about corresponding(aligned) ranges (sentences, for example). As in the case of structural attributes,we cannot represent recursive alignments or alignments on more than one level (forexample, information about aligned words additionally to aligned sentences);1We use the term attribute value to denote one element of the list of distinct strings which occur as thevalues of a positional attribute. In the case of the corpus text, this is the list of distinct words which occurin the corpus. 3

� �nally, dynamic attributes are attributes the values of which are not stored physically,but which are computed at query evaluation time by calling external tools, similarto a function call. An arbitrary number of arguments can be declared for a dynamicattribute. When the value of a dynamic attribute is requested, the argument list is�lled and an external tool is called. The external tool, then, returns the computedvalue, which is either a string or an integer value. Neiter indices nor bigram tablescan be built for dynamic attributes.A corpus has to be prepared in a special way before its data can be used by the querysystem. This preparation step involves character set normalization, tokenization, sentenceboundary detection (if required), and { in case of annotated corpora { the partitioning ofthe di�erent positional attributes (for example, corpus text and part-of-speech tags) intoseveral �les. Then, a special one-word-per-line format is produced which is used as inputfor the construction of the internal corpus representation and the indices2 . The corpus textitself is not needed any more after transforming it into the internal representation. Detailsof the internal corpus representation and the encoding steps are described in [Christ, 1994].After a corpus is encoded, it must be registered . This is achieved through a registry �lewhich declares the attributes and their types assigned to a corpus. All corpus accessingtools access a corpus only via a symbolic name, which is the �le name of the registry �le.The tools (and the users) therefore need not know where a corpus is stored in the �lesystem in order to access the data. All relevant information is captured in the registry �le.NAME "Hansard corpus (english part)"ID hansard-eHOME /corpora/encoded/hansard-eATTRIBUTE wordATTRIBUTE posDYNAMIC ishuman(STRING):INT "/corpora/utils/cmd/wn-hypen '$1' human"ALIGNED hansard-f # the french partFigure 3: A small sample registry �leA sample registry �le may look as illustrated in �gure 3. It declares a corpus hansard-eand the directory in which the data can be found. Two positional attributes are assignedto this corpus, word and pos. Additionally, the dynamic attribute ishuman is declared,which takes a string as an argument and returns an integer value (where \0" means \no"and \1" means \yes"). Upon query evaluation, a shell command is executed which consultsWordNet to evaluate whether the argument string may denote a \human object". Thecorpus is aligned to another corpus, hansard-f.A corpus can be extended after registration. Positional attributes (as well as all othertypes of attributes) can be added to an existing corpus without need for reindexing existingdata.2The internal corpus representation we use is inspired by an { unfortunately { unpublished draft paperby Ken W. Church, \A Set of Unix Tools for Processing Large Text Corpora".4

For testing purposes, we have implemented a TCP/IP protocol for network-based ex-change of corpus data within the physical layer. Through this protocol, it is possible todeclare that a given attribute of a corpus (or the whole corpus) is stored on a remotecomputer. Upon access to remotely stored data, a network connection is built up, accessauthorization is veri�ed and, if access is granted, the requested data is returned. Throughthis exchange protocol, it is possible to split corpus data between several computers in theinternet. This is useful, for example, to share corpus data between several computers or torun query tools on computers which have too little memory or hard disk space to hold largecorpora (although data access is slowed down a lot by remote connections). The remotestatus of an attribute is hidden within the physical layer, that is, clients of the physicallayer do not need to handle remote corpora di�erently from local data access.One of the most important \clients" of the physical layer is the logical layer, which isdescribed in the following section. Other clients are tools which do not need to access a cor-pus through a query language (for example, word list generators or tools which statisticallyevaluate frequency or bigram counts).3 The logical layer and the query languageThe logical layer uses the information provided by the physical layer to parse and eval-uate corpus queries given in the query language described below3. Within this layer, theset of positional attributes de�ned on a corpus can be seen as a sequence of entities re-ferred to by corpus positions. These entities may have several attributes, for example theattribute Word for the \character string" found at a given corpus position, Pos for thepart-of-speech tag assigned to that word, Root for the base form of that word, etc. Thequery language allows to �nd sequences of entities where a number of conditions over suchattribute-value pairs hold.Conditions are boolean expressions which involve attribute-value tests, where all posi-tional attributes de�ned on a corpus can be used. Such a condition may look as follows:(1) [word="chair.*" & pos != "N.*"]When this condition is evaluated against a given corpus position, it is tested whether thevalue of the word attribute at that corpus position matches (=) the regular expression"chair.*" and the value of the pos attribute does not match (!=) the regular expression"N.*"4.A query consists of a regular expression over such conditions. In addition to concatena-tion of conditions, the other standard regular expression operators are available, like *"for an arbitrary number of repetitions of the preceding regular expression, \+" for at leastone repetition, \?" for optionality, and \|" for disjunction. Parentheses can be used forgrouping of expressions. [] is a \wildcard" which matches every corpus position. Addi-tionally, the interval operator fn;mg is supported, which denotes at least n, but at most3Currently, the logical layer only supports positional, structural and dynamic attributes; access to bigramand alignment attributes has yet to be implemented.4We use the POSIX EGREP syntax for regular expressions. In this standard, the dot \." matchesevery character and the star *" matches any (possibly empty) sequence of the last character or regular(sub-)expression. A common error is to write "N*" when all strings beginning with a capital N should bematched, but the regular expression "N*" denotes all strings which entirely consist of a sequence of capitalNs. 5

m repetitions of the preceding regular expression5. Thus, regular expressions are used onthe level of attribute values as well as on the level of conditions. Example (1) is already aquery, since it is a one-element regular expression.When a query is evaluated, the query interpreter computes all matches of the regularexpression in the corpus. A match of a query is a \substring" of the corpus, that is, acorpus interval the boundaries of which are the beginning and ending corpus positions ofthe match. Since regular expressions are used which, in general, may contain repetitionoperators, these intervals can di�er in length. The result of a whole query is the set ofmatches, that is, a set of corpus intervals.The following examples illustrate some aspects of the query language. Query (2)(2) [pos="JJ.*"] [pos="N.*"] "and|or" [pos="N.*"] [pos="IN" & word != "that"]returns all corpus intervals which are (adjacent) sequences of an adjective (JJ, JJR, JJS)6,a noun (NN, NNS), a conjunction, another noun and �nally a preposition or subordinatingconjunction (IN) which must not be that (in the corpus, that was often tagged as IN,which should be excluded in this query)7. When in a condition only the word attribute isaccessed (together with the equality operator), the brackets can be omitted. So "and|or"is just an abbreviation for the complete condition [word="and|or"]8.Dynamic attributes can be accessed in a simple way:(3) "kill.*" []? [pos="N.*" & ishuman(word)]As de�ned in the sample registry �le in �gure 3, the dynamic attribute ishuman requiresa string argument and returns an integer value which internally is interpreted as \Yes" ifthe value is 1, and interpreted as \No" if the value is 0. In query 3, ishuman is called withthe value of the word attribute of the noun. When the query is evaluated, all matches arecomputed which are a sequence of a word beginning with kill, followed by an optional,unspeci�ed word (for example, by), and �nally followed by a noun for which the consultationof WordNet gives reason to assume that it may denote a human.A prede�ned dynamic attribute is \f", which returns the absolute frequency of itsargument in the corpus. To search the \most common human beings who are loved", thefollowing query could be formulated:(4) "love.*" []? [pos="N.*" & f(word)>10 & ishuman(word)];Structural attributes, like sentence boundaries, can be accessed by SGML-like tags:(5) [pos="N.*"] [] <s> "She"This query returns all corpus intervals where a noun, followed by an arbitrary item (whichis to match the full stop or other sentence delimiter) occurs in front of a sentence boundary,followed by the word "She".5When m is omitted in such an interval, exactly n repetitions are matched.6The corpus on which query (2) was run is a part of the Penn Treebank, which has been tagged withthe Penn Treebank POS tagset. See [Marcus et al., 1993] for an explanation of the tags.7Query 2 serves to �lter concordances which illustrate the problems of adjective scope and PP-attachmentwithin conjoint noun phrases. For a few matching lines, see �gure 4.8The condition "and|or" could as well be expressed as ([word="and"]|[word="or"]), or, abbreviated,as ("and"|"or"). Whereas the latter two expressions use disjunction on the level of conditions (and haveto be grouped by parentheses), the expression used in query (2) uses disjunction on the level of attributevalues. 6

Structural attributes like sentence or article boundaries can also be used to limit thesearch space when repetitions are used. For example, the query(6) "president" []* "said"would search the two strings "president" and "said" separated by an arbitrary numberof non-speci�ed items. In general, only those matches which entirely lie within one sentencewill be of interest. This can be achieved by using the within construct:(7) "president" []* "said" within s;Now, the whole match has to lie within the boundaries of one sentence9. All structuralattributes de�ned on a corpus can be used as boundary markers (like <s>) or in the withinconstruct. For example, when the structural attribute article was de�ned on a newspapercorpus, within article can be used in queries as well.An additional, powerful construct of the query language are label references , which canbe used instead of an attribute value. A condition can be labelled by preceding it with alabel name and a colon (\a:"), as in (8):(8) a:[pos="N.*"] ...Then, in a subsequent condition in the same query, an agreement of attribute values canbe expressed:(9) a:[pos="N.*"] []* [pos="PRP" & num=a.num] within s;Here, the value of the num attribute of the personal pronoun (PRP) must be the same asthe value of the num attribute at the position the label a refers to, that is, the value ofthe number attribute of the noun. The whole match must lie within one sentence. Anotherexample which illustrates the power of label references is the following query:(10) a:[pos="N.*"] ([]* [word=a.word]){2} within s;This query returns all intervals where the same noun occurs more than tree times withinthe same sentence.The query language implements some additional constructs, which cannot described indetail here. For a full description of the query language, its power and a comparison withother corpus query languages, see [Schulze, 1994].Query results can be saved in �les and reloaded and reviewed in later sessions. Thelogical layer supports subsequent queries on the result of an earlier query, which can greatlyreduce the search space and therefore improves e�ciency. For example, in a newspapercorpus, one can �rst extract all articles of a corpus where a certain syntactic constructionis used. Afterwards, this \subcorpus" of articles can be analysed by subsequent queriesrunning only on a part of the original corpus. Additionally, set operators are supported,that is, query results can not only be produced by queries, but also by combining results ofearlier queries with union, intersection and di�erence operators. Through this mechanism,it is possible, for example, to intersect the set of sentences generated by a �rst query with9The number of sentences which may \surround" the matched interval can be expessed with a numberfollowing the within keyword. \within 2 s" therefore allows a two-sentence distance.7

the set of sentences of a second query to get all sentences where the conditions expressed inboth queries hold. Although the same result could possibly be produced by a single query aswell, set operators are more user-friendly. In our eyes, searching on the results produced byearlier queries and the possibility to combine query results to new \subcorpora" supports asuccessive re�nement of queries with the gain of e�ciency, and allows a stepwise approachto the solution of complex problems.The result of a query can be postprocessed by di�erent tools for presentation, frequencycounting, additional �lters etc. The following section describes two simple presentationtools.4 Presentation modules

Figure 4: The Xkwic presentation moduleA presentation module has the task to display the information returned by a query,suitably formatted for a human user. One instance of such a module is a program calledXkwic which is an X Window System based graphical user interface for displaying key8

hansard-e: The only way to make and to encourage the responsiveness of child care services toparental and consumer and children 's needs is to encourage competition among those services, to encourage a diversity of services , as indeed exists , so they can re
ect the variety of<parental needs and requirements in> this area .hansard-f: Pour que les garderies tiennent v�eritablement compte des besoins des parents , desconsommateurs et des enfants , il faut favoriser la concurrence entre les services , encouragerla diversit�e , telle qu' elle existe , a�n de satisfaire aux exigences et aux besoins nombreux desparents dans ce domaine .Figure 5: Part of the output of a presentation module which uses alignment informationword in context (KWIC) concordances. Xkwic also provides an input area for typing inqueries to the logical layer, thus being a general and comfortable interface for corpus work.Figure 4 shows Xkwic after processing the query displayed in the topmost windowwithin the English part of the HANSARD corpus (the same query as shown in example(2) above). The inverted KWIC line is displayed with a larger context in the bottommostwindow.Xkwic provides functions to adjust the size of the displayed match context, to sortthe query result, to delete single or multiple KWIC lines and a function to write (selected)KWIC lines textually to a �le. Additionally, Xkwic supports a simple query history: allqueries which are entered are kept in a list which can be saved to a �le and reloaded inlater sessions. An earlier query can then simply be rerun by clicking on the entry in thequery history list. Xkwic is described in more detail in [Christ, 1993].If corpora are aligned (like the HANSARD corpora) and the alignment was de�ned inthe registry �le, another presentation module may be used to display both the query resultin the source corpus as well as the aligned portion of the target corpus. The same queryresult displayed in �gure 4 then appears as shown in �gure 5 (the matching part of thesource corpus is surrounded by angle brackets)10.5 Further stepsDiscussions with users of the query system have shown that it is highly desirable to be ableto use parsed corpora in queries. So, one direction of our future work is to design a physicalrepresentation of parse trees which allows e�cient access and processing and to augmentthe query language with a construct to refer to this information.Currently, Xkwic does not support all operations provided by the logical layer, es-pecially the operations on query results (set operations, saving and loading of queryresults, : : :). Therefore, one of our next goals is to integrate the full functionality of thelogical layer into a comfortable user interface.6 ConclusionsThe modular architecture of the corpus query system described in this paper has severaladvantages:10It would be possible to integrate the second module into Xkwic, but this hasn't yet been done.9

� several knowledge sources can be added to individual corpora. The knowledge theyprovide can then be used in corpus queries;� knowledge sources or annotations can be added to a corpus without the necessity ofreindexing existing data;� through a
exible data model, the information necessary to evaluate the query maybe derived from di�erent sources, can be computed at query evaluation time or canbe gathered from remote computers;� through the separation of storage, evaluation and presentation tasks into di�erentmodules, the whole system can be adapted to di�erent usage situations.The
exibility achieved by this architecture, together with the power of the query language,provide the linguist or lexicographer with an extensible and comfortable corpus workbenchwhich allows the querying of corpora with much more precision than within frameworksbased only on the corpus text. This leads to more speci�c queries and results, reducing theamount of data which has to be browsed manually.References[Baayen et al., 1993] R. H. Baayen, R. Piepenbrock, and H. van Rijn. The CELEX Lex-ical Database (CD-ROM). Linguistic Data Consortium, University of Pennsylvania,Philadelphia, PA, 1993.[Christ, 1993] Oliver Christ. The Xkwic User Manual. Institut f�ur maschinelle Sprachver-arbeitung, Universit�at Stuttgart, 1993.[Christ, 1994] Oliver Christ. The IMS Corpus Workbench Technical Manual. Institut f�urmaschinelle Sprachverarbeitung, Universit�at Stuttgart, 1994.[Marcus et al., 1993] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz.Building a large annotated corpus of English: the Penn Treebank. Computational Lin-guistics, 19(2):313{330, June 1993.[Miller et al., 1993] George A. Miller, Richard Beckwith, Christiane Fellbaum, DerekGross, and Katherine Miller. Introduction to WordNet: An on-line lexical database.Technical report, Cognitive Science Laboratory, Princeton University, 1993.[Schulze, 1994] Bruno M. Schulze. Entwurf und Implementierung eines Anfragesystemsf�ur Textcorpora. Diplomarbeit Nr. 1059, Universit�at Stuttgart, Institut f�ur maschinelleSprachverarbeitung (IMS) and Institut f�ur Informatik, January 1994. (In German).
10

