
The IMS Open Corpus Workbench (CWB)

Corpus Encoding and Management Manual

� CWB Version 3.5 �

Stephanie Evert & The CWB Development Team

http://cwb.sourceforge.net/

July 2022

Contents

1 Prerequisites 2

2 First steps: Encoding and indexing 2

3 Input format extensions 5

4 Indexing and compression without CWB/Perl 7

5 CWB corpora and XML 8

6 Adding attributes to an encoded corpus 10

7 Adding XML annotations 11

8 Decoding and analysing corpora 13

9 Sentence alignment 16

9.1 The example corpora . 17

9.2 Using the sentence aligner . 17

9.3 Advanced use of the aligner . 20

9.4 Encoding the aligner's output . 22

9.5 Importing a pre-existing alignment . 23

9.6 Importing alignment data from TMX format . 25

A Appendix: Registry �le format 25

http://cwb.sourceforge.net/

CWB Encoding Manual 2 FIRST STEPS: ENCODING AND INDEXING

B Appendix: Limits 26

C Appendix: Magic compression and decompression 27

1 Prerequisites

In order to follow the examples given in this manual, you need to install the IMS Open Corpus
Workbench (CWB), version 3.5, which can be downloaded from

http://cwb.sourceforge.io/download.php

It is easiest to install a pre-compiled binary package, following instructions on the Web page and in
the enclosed README �le.

If you are running CWB on a Unix-like operating system (Linux, Mac OS, or the Windows Subsystem
for Linux), you should also install the CWB/Perl interface, which includes the useful cwb-make and
cwb-regedit programs. Unfortunately CWB/Perl is not available for native Windows.

A data package with all input �les needed for the example commands in this manual is available from

http://cwb.sourceforge.io/documentation.php

2 First steps: Encoding and indexing

The standard CWB input format is one-word-per-line text,1 with the surface form in the �rst column
and token-level annotations speci�ed as additional TAB-separated columns. XML tags for sentence
boundaries and other structural annotation must appear on separate lines. This �le format is also
called verticalized text and has the customary �le extension .vrt. An example of the verticalized
text format for a short sentence with part-of-speech and lemma annotations is shown in Figure 1.
This �le, as well as all other input �les required by the following examples are made available in the
accompanying data package.

<s>

It PP it

was VBD be

an DT an

elephant NN elephant

. SENT .

</s>

Figure 1: Verticalized text �le example.vrt

In order to encode the �le as a corpus, follow these steps:

1Or, more precisely, one token per line; i.e., CWB expects punctuation marks, parentheses, quotes, etc. on separate
lines. The precise tokenization rules depend on your theoretical assumptions and the requirements of annotation
software such as part-of-speech taggers. CWB does not include any components for any kind of tagging, and has to be
provided with a tokenized and annotated corpus.

© 2005�2022 Stephanie Evert & The CWB Development Team 2

http://cwb.sourceforge.io/download.php
http://cwb.sourceforge.io/documentation.php

CWB Encoding Manual 2 FIRST STEPS: ENCODING AND INDEXING

� Create a data directory where �les in the binary CWB format will be stored. Here, we assume
that this directory is called /corpora/data/example.2 If this directory already exists and
contains corpus data (from a previous version), you should delete all �les in the directory. NB:
You need a separate data directory for each corpus you want to encode.

� Choose a registry directory, where all encoded corpora have to be registered to make them
accessible to the CWB tools. It is recommended that you use the default registry directory.
This varies depending on your operating system and method of installation. The most common
locations3 of the default registry are:

� On Unix, installed by compiling from source: /usr/local/share/cwb/registry

� On Unix, installed via package manager: /usr/share/cwb/registry

� On Windows, depends on your choice at install time, but most usually something like
C:\Program Files\CorpusWorkbench\Registry

If you don't use the default registry, you will have to specify the path to your registry directory
with a -r �ag whenever you invoke one of the CWB tools (or set an appropriate environment
variable, see below). In the example commands in this manual, we assume that you use the
standard registry directory.

� The next step is to encode the corpus, i.e. convert the verticalized text to CWB binary format
with the cwb-encode tool. Note that the command below has to be entered on a single line.

$ cwb-encode -d /corpora/data/example

-xsBC9 -c ascii -f example.vrt

-R /usr/local/share/cwb/registry/example

-P pos -P lemma -S s

(The $ character indicates a command line to be entered into your terminal. It is inspired by the
customary input prompt used by the Bourne shells sh and bash.)

The �rst column of the input �le is automatically encoded as the default positional attribute (p-
attribute) named word. -P �ags are used to declare additional p-attributes, i.e. token-level annota-
tions. -S �ags declare structural attributes (s-attributes), which encode non-recursive XML tags
and whose names must correspond to the XML element names. By convention, all attribute names
must be lowercase (more precisely, they may only contain the characters a-z, 0-9, -, and _, and may
not start with a digit). Therefore, the names of XML elements to be included in the CWB corpus
must not contain any non-ASCII or uppercase letters.

The -R option automatically creates a registry �le, whose �lename has to be written in lowercase.
Note that it is necessary to specify the full path to the registry �le, even if the default registry directory
is used. The CWB name of the corpus (also called the corpus ID) is identical to the name of the
registry �le, but is written in uppercase (here it will be EXAMPLE). The CWB name is used to activate
a corpus in the query processor CQP, for instance.

-xsBC9 is a cluster of options which switch on data cleanup procedures. They are, in order: recognise
and handle basic XML features (-x); ignore any empty lines (-s); tidy up stray blank space characters
(-B); remove characters that are invalid for the speci�ed encoding (-C); silently discard unrecognised
XML tags (-9). Most of the time, you would want to use all of these; the only time to omit them is

2The �lesystem paths referred to in this manual are all Unix-style; however, CWB on Windows works happily with
Windows-style paths.

3In previous versions of CWB, the default registry directory used to be /corpora/c1/registry (for historical reasons).
All binary packages of CWB 3.0 and newer use the new default setting. If you already have a working environment with
the old registry path, you may want to compile the CWB source code yourself, selecting the classic site con�guration.

© 2005�2022 Stephanie Evert & The CWB Development Team 3

CWB Encoding Manual 2 FIRST STEPS: ENCODING AND INDEXING

when you are working with �les that you know have no encoding or formatting problems (or if you use
the new -n or -N formats; see section 3). Using -x and -9 does not preclude more complex XML; see
section 5.

The -c option speci�es the character encoding (or charset) of the input data. The example.vrt �le does
not contain any non-ASCII characters, so in this example we specify -c ascii. The other commonly
used charsets are Unicode UTF-8 (-c utf8) and ISO 8859-1(-c latin1). We strongly recommend
use of UTF-8 over ISO 8859 charsets wherever possible. A full list of charsets supported by CWB,
and the corresponding single word labels used with the -c option, is available in the manual �le for
cwb-encode.4

Input �les with the extensions .gz, .bz2 or .xz are assumed to be in the gzip, bzip2 and xz compressed
formats, respectively. Such �les are automatically decompressed (provided that gzip, bzip2 and/or
xz are available).5

Multiple input �les can be speci�ed by using the -f option repeatedly. Files will be read in the
order in which they appear on the command line. Shell wildcards (e.g. -f *.txt) do not work,
since each �le name must be preceded by -f. However, it is possible to read all �les named *.vrt,
*.vrt.gz, *.vrt.bz2 or *.vrt.xz in a given directory using the -F option (possibly repeated for
multiple directories). The input �les in each speci�ed directory will be read in alphabetical order.

All options (-d, -f, -R, etc.) must precede the attribute declarations (-P, -S, etc.) on the command
line. It is mandatory to specify a data directory with the -d option.6 This directory should always be
given as an absolute path, so the corpus can be used from any location in the �le system.

Before a corpus can be used with CQP and other CWB programs, various index �les have to be built.
It is also strongly recommended to compress these index �les, especially for larger corpora:

� The easiest and recommended method for indexing and compression is to use the cwb-make
script that comes with theCWB/Perl interface modules. If you are unable to install the modules
and use this script (e.g. if you are using the Windows version of CWB), refer to Section 4 for a
manual procedure.

$ cwb-make -V EXAMPLE

� If you did not use the standard registry directory /usr/local/share/cwb/registry when run-
ning cwb-encode, you will have to specify the path to your registry directory with the -r option.
Alternatively, you can set the environment variable CORPUS_REGISTRY, which is automatically
recognized by all CWB programs. In a Bourne shell (sh or bash), this is achieved with the
command

$ export CORPUS_REGISTRY=/home/stephanie/registry

In a C shell (csh or tcsh), the corresponding command is

$ setenv CORPUS_REGISTRY /home/stephanie/registry

4Older versions of CWB - including the long-term �stable� 3.0 - only fully supported ISO 8859-1. While it is possible,
just about, to work with other charsets in CWB 3.0, it is very strongly recommended that you upgrade to CWB version
3.4 to get full support for all ISO-8859-x encodings as well as UTF-8. While as late as the mid-2010s, there were corpus
annotation programs in wide use that generated ISO 8859 output, as of this writing UTF-8 is now �nally the accepted
standard, and the recommended encoding for use with CWB. Nevertheless, cwb-encode still defaults to Latin-1 (for
backward compatibility with 3.0) if no -c option is supplied; it is for this reason that we recommend always specifying
the charset explicitly.

5By �available� we mean that the program in question must be both installed on your computer, and �ndable to
CWB. See Appendix C.

6Previous versions of the CWB would default to the current working directory in the absence of a -d. As a result,
simply typing cwb-encode on the command line would litter this directory with a number of empty data �les and then
hang, waiting for corpus data on the standard input.

© 2005�2022 Stephanie Evert & The CWB Development Team 4

CWB Encoding Manual 3 INPUT FORMAT EXTENSIONS

In either case, it is probably a good idea to add this setting to your login pro�le (~/.profile
or ~/.login). If you do not want to set the environment variable, you need to invoke cwb-make
with

$ cwb-make -r /home/stephanie/registry -V EXAMPLE

On Windows, as noted above,cwb-make is not available, as it is part of CWB/Perl. However
the same methods of setting the registry apply to use of the uitilities discussed in Section 4.
Environment variables can be set persistently in Windows by going to the Settings app; clicking
on ��nd a setting�; typing �environment�; and selecting �Edit environment variables�. In the
interface that pops up, open the environment variables dialogue, and add a new variable with the
name CORPUS_REGISTRY and the path to your registry as its value. To set the registry temporarily
in a terminal session, use this command:

$ set CORPUS_REGISTRY=C:\Users\stephanie\registry

The following examples assume that you either use the default registry directory or have set the
CORPUS_REGISTRY variable appropriately.

� You can also specify multiple registry directories separated by colon characters (:), both in
the CORPUS_REGISTRY environment variable and the -r options of command-line tools. This is
convenient e.g. if some corpora are stored on external hard drives that are not always mounted.
Such optional registry directories may be pre�xed by a question mark (?) in order to indicate
that they may not be accessible (otherwise CQP and some other tools will print warnings to alert
you to possible typos in the registry path). For instance, one of the lead CWB developers has
the following registry path in his ~/.bashrc con�guration:

$ export CORPUS_REGISTRY=/Corpora/registry:?/Volumes/X/CWB/registry

The built-in default registry directory is not automatically appended to this path. If you want
to specify additional registry directories but keep the default one, you need to include the default
location explicitly in the value of CORPUS_REGISTRY.

The -V switch enables additional validation passes when an index is created and when data �les are
compressed. It should be omitted when encoding very large corpora (above 50 million tokens), in order
to speed up processing. In this case, it is also advisable to limit memory usage with the -M option.
The amount speci�ed should be somewhat less than the amount of physical RAM available (depending
on the number of users etc.; too little is better than too much). For instance, on a Linux machine
with 8 GiB of RAM, -M 2048 is a safe choice. The cwb-make utility applies a default limit of -M 75 if
no explicit -M option is given, which is unreasonably small for current hardware, being optimised for
machines of the last millennium.

� Use the cwb-describe-corpus utility to display some information about an encoded corpus (add
the -s option for details and to reassure yourself that all necessary data �les have been created):

$ cwb-describe-corpus EXAMPLE

3 Input format extensions

Recent versions of CWB have added extended options for the format of the input �les.

As of CWB v3.4.37, .xz is now a supported compression format in addition to .gz and .bz2 (as long
as the relevant program, or 7-zip, is available), and compressed �les are accepted for input and output

© 2005�2022 Stephanie Evert & The CWB Development Team 5

CWB Encoding Manual 3 INPUT FORMAT EXTENSIONS

by CQP and all CWB command-line tools.7 Moreover, it is possible to read from or write to shell
pipes in these versions, by specifying a quoted �lename that starts with a pipe character (|).

As of CWB v3.4.27, an alternative input format can be activated with the -n option, which requires
all token lines to be numbered in the �rst TAB-separated column (see Fig. 2). The numbering itself is
ignored but helps to make an unambiguous distinction between XML tags and token lines. This is a
useful and robust alternative to encoding metacharacters as XML entities (see section 5), which many
other command-line tools do not process correctly. The options -n and -x can safely be combined.

<s>

1 The DT the

2 tag NN tag

3 <s> SYM <s>

4 is VBZ be

5 useful JJ useful

6 ! SENT !

</s>

Figure 2: Verticalized text �le example-numbered.vrt in -n format

As of CWB v3.4.28, the token numbers in the �rst column can be captured in an additional p-attribute
(e.g. id) by using the -N option instead of -n (e.g. -N id). In either case, comment lines starting with
a hash (#) are now ignored silently. The attribute declared with -N will always be the �rst p-attribute
in the registry �le, followed by the �rst attribute declared with -p or the default word attribute.

CWB v3.4.28 also introduces support for processing empty lines as sentence breaks with the -L option,8

which implies -s. The segmentation is stored in a user-speci�ed s-attribute, e.g. -L s. Note that this
is a special �hidden� attribute, so explicit <s> and </s> tags will be treated as unknown elements. The
combination of both options makes it possible to encode input �les in one of the CoNLL formats9

without additional pre-processing:

$ cwb-encode -N id -L s -f conll.vrt ...

Several caveats apply:

� CWB does not recognise any speci�c CoNLL �avour, i.e. all columns (except for the token
numbers in the �rst column) have to be declared explicitly as p-attributes.

� Multiword tokens (labelled with a number range, e.g. 3-4) and empty tokens (labelled e.g. as
5.1) are silently discarded.

� All comment lines are discarded, even the special notation used for text structure boundaries and
metadata in CoNLL-U (which is entirely misguided, of course). Such metadata comments can
easily be converted into XML tags in a pre-processing step and encoded as described in Sec. 5.

� All annotation columns are encoded as-is into positional attributes. Dependency relations or
phrases in bracketing notation are not transformed into graph or tree structures (which are not
supported by CWB 3); chunks in IOB notation are not expanded into a structural attribute.

� CoNLL feature set notation can be transformed into CWB syntax, but this has to be requested
explicitly on the command line for each attribute, e.g. -P morph/ (see further Sec. 6). Sets will
also be re-sorted in alphabetical order with this option.

7Previous CWB versions had partial support for gzip-compressed input and output �les, indicated in the respective
man pages.

8Mnemonic: -L stands for sentence Limits.
9see e.g. https://universaldependencies.org/format.html and format examples on this page

© 2005�2022 Stephanie Evert & The CWB Development Team 6

https://universaldependencies.org/format.html

CWB Encoding Manual 4 INDEXING AND COMPRESSION WITHOUT CWB/PERL

4 Indexing and compression without CWB/Perl

If you do not have the CWB/Perl interface installed, the best thing you can do is to install the
CWB/Perl modules and the scripts it includes, and then go back to Section 2. If it is impossible to
install CWB/Perl (for example, on Windows), or if you really want to learn the nitty-gritty of corpus
encoding, continue here.

� In the manual procedure, indexing and compression are performed in separate steps by di�erent
tools. First, you have to run cwb-makeall in order to build the necessary index �les.

cwb-makeall -V EXAMPLE

cwb-makeall accepts the same -V, -M and -r options as cwb-make. The comments on en-
abling/disabling validation given above with regards to cwb-make naturally apply to cwb-makeall
as well.

When the index �les have been created, the corpus can already be used with CQP and other CWB
tools. However, it is recommended that you compress the binary data �les to save disk space and
improve performance. For very small corpora (under 10 million tokens) the compression won't make
a lot of di�erence; for corpora larger than that, it probably will. Compression is only supported for
p-attributes at present.

� For positional attributes, both the token stream data and the index can be compressed. There
are separate tools for compressing the two types of data �les.

� The token stream can be compressed with the cwb-huffcode tool. Use the -P option to process
a single attribute, or compress all p-attributes with -A.

$ cwb-huffcode -A EXAMPLE

� Index �les can be compressed with the cwb-compress-rdx tool, which accepts the same options.

$ cwb-compress-rdx -A EXAMPLE

When compression was successful, both tools will print the full pathnames of uncompressed data
�les that are now redundant and can be deleted: attrib.corpus after running cwb-huffcode; at-

trib.corpus.rev and attrib.corpus.rdx after running cwb-compress-rdx.

If you run cwb-makeall again, it will show now that the p-attributes are compressed. The compressed
data �les are validated by default, so it is safe to remove the redundant �les.

Validation can be turned o� in both cwb-huffcode and cwb-compress-rdx, using the -T option (T
for trust). However, letting validation run causes much less performance problems than can arise from
validation with cwb-makeall.

� NB: If you re-encode a corpus, it is important to erase all �les in the data directory �rst. The
cwb-makeall program will not recognize that existing index �les or compressed data �les are out
of date, and will therefore fail to rebuild them automatically. (This is one of the reasons why the
CWB/Perl cwb-make tool should be preferred.)

© 2005�2022 Stephanie Evert & The CWB Development Team 7

CWB Encoding Manual 5 CWB CORPORA AND XML

5 CWB corpora and XML

Nowadays, machine-readable text and linguistic annotations are often provided in XML format.
CWB's XML support is activated by the following encoding options: -x for XML compatibility mode
(recognises default entities and skips comments as well as an XML declaration), -s to skip blank lines
in the input, and -B to strip whitespace from tokens. All three options -xsB should (almost) always
be used.10 The vertical text format with TAB-separated p-attributes is still required by cwb-encode,
but this format can easily be generated from an arbitrary XML �le with the aid of a little script in
any suitable language. Figure 3 shows a typical example of an XML input �le for the CWB, including
an XML declaration and a comment line that options -xsB will cause to be ignored. Note that despite
the use of tabs for columns, this is still a well-formed XML �le.

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes" ?>

<!-- A Thrilling Experience -->

<story num="4" title="A Thrilling Experience">

<p>

<s>

Tick NN tick

. SENT .

</s>

<s>

A DT a

clock NN clock

. SENT .

</s>

<s>

Tick VB tick

, , ,

tick VB tick

. SENT .

</s>

</p>

...

</story>

Figure 3: Verticalized XML �le vss.vrt

XML elements (i.e. matching pairs of start and end tags) can be encoded as s-attributes, which have
to be declared with -S �ags (for the �le vss.vrt, the �ags -S story -S p -S s would be used). If XML
regions of the same type are nested, encoding will only work correctly if you add :0 to the s-attribute
declaration, which enables a rudimentary XML parser built into cwb-encode. Attribute-value pairs
in XML start tags, such as

<story num="4" title="A Thrilling Experience">

can be stored as a single unparsed text string (num="4" title="A Thrilling Experience") by using
the �ag -V instead of -S. This form of encoding is not convenient for CQP queries, though. It is more
desirable to declare XML tag attributes explicitly; doing so will automatically split the XML elements
into multiple s-attributes.

10Along with the -C option for charset cleanup; see section 2.

© 2005�2022 Stephanie Evert & The CWB Development Team 8

CWB Encoding Manual 5 CWB CORPORA AND XML

� Encode the verticalized XML �le vss.vrt as a CWB corpus, with indexing and compression. NB:
The last attribute declaration �ag (-0 collection) is a digit zero (for a �null attribute�, see
below).

$ cwb-encode -d /corpora/data/vss -f vss.vrt

-R /usr/local/share/cwb/registry/vss

-xsBC -c ascii -P pos -P lemma

-S s:0 -S p:0 -S story:0+num+title -0 collection

$ cwb-make -V VSS

If you do not have the cwb-make script available, follow the steps in Section 4.

These commands will encode the corpus VSS and create a registry �le, including the s-attributes s, p,
story, story_num, and story_title. The <story> start tags are parsed and the attribute values are
stored as annotations of the attributes story_num (value: 4) and story_title (value: A Thrilling

Experience). Regions of the story attribute itself will not be annotated. Use -V instead of -S to
store all attribute-value pairs as a single string, which can be useful for displaying and re-exporting
the XML tags.

XML elements with di�erent names (such as <s> and <p>) are encoded independently, so they can
nest and overlap in arbitrary ways. The cwb-encode program does not perform any validation or
well-formedness tests on the XML elements. When elements are nested recursively (e.g. a <table>

within a <table>), the embedded elements will be ignored, because of the use of :0 speci�ed above.
After encoding, cwb-encode prints a summary listing the number of dropped XML elements. If you
instead want to preserve nested elements, you can specify a maximal level of embedding instead of :0
in the examples above. For instance, -S table:2 allows two levels of embedding for <table> elements.
Nested elements are automatically renamed to <table1> and <table2>, respectively, and stored in
separate s-attributes.

Sometimes, the input data may contain XML tags that should not be encoded in the corpus. For
instance, the stories in vss.vrt have to be wrapped in a single root element <collection> in order
to obtain a well-formed XML �le. Instead of removing such tags during data preparation, they can
directly be �ltered out by the cwb-encode tool. For this purpose, they have to be declared with the
�ag -0 (digit zero, for �null attribute�) instead of -S or -V. All start and end tags of these elements
will be ignored completely. There is no need to add :0 or XML attribute declarations. Note that all
XML tags that have not been declared with a -S, -V or -0 �ag will be encoded as literal tokens (that
is, words, without annotations), accompanied by a warning message.

Starting with CWB 3.4.21, unknown XML tags can automatically be declared as null attributes with
the -9 (�auto-null�) option. This is recommended to capture the correct token stream for an input �le
with very many and/or undocumented XML elements:

$ cwb-encode -d /corpora/data/vss -f vss.vrt

-R /usr/local/share/cwb/registry/vss

-xsBC -c ascii -9 -P pos -P lemma

You may have noticed in Figure 3 that the XML �le is declared to be in ISO 8859-1 (or Latin-1)
encoding rather than the standard UTF-8 format. CWB ignores this, along with the rest of the XML
declaration. The charset still needs to speci�ed on the command line; here, it is -c ascii, since we
know there are no non-ASCII characters in this particular �le; see also section 2.

© 2005�2022 Stephanie Evert & The CWB Development Team 9

CWB Encoding Manual 6 ADDING ATTRIBUTES TO AN ENCODED CORPUS

6 Adding attributes to an encoded corpus

In order to add positional attributes to a corpus that has already been encoded, create input data
in the standard verticalized format, but listing only the new attributes. Figure 4 shows an example
of such an input �le, containing WordNet synonyms for the tokens from Figure 1 (without attempting
any form of word sense disambiguation). A corresponding list of synonyms for the complete VSS corpus
can be found in the �le syns.vrt.

|

|be|cost|live|work|equal|exist|occur|...|

|

|elephant|

|

Figure 4: WordNet synonyms for the text shown in Figure 1 (excerpt from �le syns.vrt)

The special notation seen in Figure 4 indicates that the synonyms for any given word constitute an
unordered set (or feature set in CWB terminology). Vertical bars (|) separate individual set elements
and enclose the entire set; a single bar | denotes the empty set. Feature sets are stored as plain strings
in a CWB-encoded corpus, but the special notation enables the query processor CQP to test whether
a particular string is contained in the set, match all set elements against a regular expression, and
compute the intersection of two sets.

� The �le syns.vrt is encoded as usual, but the default word attribute has to be suppressed with the
option -p -. It is highly recommended to check that the number of tokens in the new �le (�nd
this out on Unix with the command wc -l syns.vrt) is equal to the corpus size (as reported
by cwb-lexdecode -S EXAMPLE), so that the new attribute is properly aligned to the rest of the
corpus.

$ cwb-encode -d /corpora/data/vss -f syns.vrt -p - -P syn/

Notice the slash (/) appended to the attribute name syn. This notation indicates that the new
attribute should be treated as a feature set; cwb-encode will automatically validate and normalise
the supplied values, issuing warnings if they are not well-formed feature sets.11

� As of CWB v3.4.28, cwb-encode is more lenient with the feature set format, also accepting input
without the leading and trailing |, e.g. baggage|luggage and elephant (for a single-member
set). An empty string12 or single underscore (_) is interpreted as an empty set. This change was
introduced to provide better support for CoNLL-style set notation (also used e.g. by TreeTagger
lemmas), which can now be encoded without a pre-processing step. As a consequence, there will
no longer be a warning if an attribute is mistakenly declared as a feature set (e.g. -P word/); the
values will silently be transformed into single-item sets.

� The registry �le for the corpus VSS (which you will �nd in the registry folder speci�ed when
it was encoded, or if none was speci�ed, the default registry) now needs to be edited to add a
declaration of the new attribute. Add the line

ATTRIBUTE syn

at the bottom of the �le. If the CWB/Perl interface has been installed, the registry �le can also
be edited from the command line with the cwb-regedit registry editor script:

11A feature-set attribute that is not declared as such at index-time can still be treated as a feature set in CQP, but in
this case responsibility is with the user to ensure that the values are well-formed feature sets.

12Keep in mind that the option -U "" has to be speci�ed in this case in order to allow empty strings as values.

© 2005�2022 Stephanie Evert & The CWB Development Team 10

CWB Encoding Manual 7 ADDING XML ANNOTATIONS

$ cwb-regedit VSS :add :p syn

This script can also be used to list and delete attributes, and to print basic information about a
corpus (similar to cwb-describe-corpus, but easier for further processing). Type cwb-regedit -h

for further information.

� Now you can build index �les and compress the new attribute:

$ cwb-make -V VSS

or

$ cwb-makeall -V VSS syn

$ cwb-huffcode -P syn VSS

$ cwb-compress-rdx -P syn VSS

In order to add structural attributes with computed start and end points (corpus positions), you
can use the cwb-s-encode tool. The corresponding start and end positions of existing s-attributes can
be obtained with cwb-s-decode. The following example adds information about sentence length to
the VSS corpus.

� The existing s attribute is decoded into a temporary �le, then awk13 is used to compute sentence
lengths, and the resulting annotated regions are encoded with cwb-s-encode.

$ cwb-s-decode VSS -S s > s.list

$ awk 'BEGIN { FS=OFS="\t" } { print $1, $2, $2-$1+1 }' s.list > s_len.list

$ cwb-s-encode -d /corpora/data/vss -f s_len.list -V s_len

Note that it is currently not necessary to run cwb-make after adding an s-attribute.

� However, the new attribute still has to be declared in the registry �le, either by manually adding

STRUCTURE s_len

or from the command line using the registry editor script:

$ cwb-regedit VSS :add :s s_len

Tables of corpus positions as input for cwb-s-encode can also be created from CQP query results using
the dump or tabulate command in a CQP session.

7 Adding XML annotations

In order to add XML annotations (e.g. <np> and <pp> tags inserted by a chunk parser) to an
existing corpus, the usual strategy is to decode the token stream (and other attributes if necessary) to
a temporary �le. A chunk parser will often expect <s> and </s> tags marking sentence boundaries.

� Decode token stream (word forms) with start and end tags for <s> regions.

$ cwb-decode -C VSS -P word -S s > word_s.vrt

� We then run the chunk parser on the temporary �le. The chunk parser adds its <np> and <pp>

tags to the token stream, creating the �le shown in Figure 5. This �le is also provided as part of
the data package for this manual.

13awk is a standard Unix tool, not available on Windows by default, and not to our knowledge easy to install. On
Windows, therefore, you would need to use some other program to process the corpus position data.

© 2005�2022 Stephanie Evert & The CWB Development Team 11

CWB Encoding Manual 7 ADDING XML ANNOTATIONS

<s>

<np head="experience>

My

experience

<pp head="of">

of

<np head="life">

life

</np>

</pp>

</np>

did

not

...

</s>

Figure 5: Decoded text with chunk annotations (�le chunks.vrt)

� It is important that the token stream is left intact when adding XML annotations. In particular,
tokens (as well as XML tags) must remain on separate lines and may not be split or combined.
As a preliminary check, make sure that the number of tokens in chunks.vrt is equal to the corpus
size. On Unix, the grep and wc utilities can be used for this:

$ grep -v '^<' chunks.vrt | wc -l

Now we can use cwb-encode to encode the XML annotations as structural attributes. The start and
end points of regions are automatically computed from the token stream. Since we do not want to
overwrite the word attribute, we specify -p -. With no p-attributes declared, all lines in the input �le
except for the XML tags will be ignored. Recall that -0 s (digit zero) instructs cwb-encode to ignore
<s> and </s> tags (without -S s they would otherwise be interpreted as literal tokens and mess up
the token stream).

� Encode <np> and <pp> regions in chunks.vrt as new s-attributes:

$ cwb-encode -d /corpora/data/vss -f chunks.vrt

-p - -0 s -S np:0+head -S pp:0+head

In this example, cwb-encode will issue warnings about nested regions being dropped. As can be seen
from Figure 5, <np> (as well as <pp>) regions may be embedded recursively. In order to preserve such
nested regions, change the :0 modi�er to :2, allowing up to two levels of embedding (separately for
each element type, i.e. <np> regions embedded in larger <np> regions, etc.). In general, :n allows up
to n levels of embedding. The embedded regions will automatically be renamed to np1, np2, pp1, and
pp2, respectively.

� Encode chunks.vrt, allowing up to two levels of embedding for <np> and <pp> regions:

$ cwb-encode -d /corpora/data/vss -f chunks.vrt

-p - -0 s -S np:2+head -S pp:2+head

� The full list of s-attributes created by this command is np, np1, np2, np_head, np_head1,
np_head2, pp, pp1, pp2, pp_head, pp_head1, and pp_head2. They all have to be declared in
the registry �le of the corpus VSS, either by adding the appropriate entries manually, or with the
registry editor script:

© 2005�2022 Stephanie Evert & The CWB Development Team 12

CWB Encoding Manual 8 DECODING AND ANALYSING CORPORA

$ cwb-regedit VSS :add :s np np1 np2 np_head np_head1 np_head2

$ cwb-regedit VSS :add :s pp pp1 pp2 pp_head pp_head1 pp_head2

� Attribute-value pairs in XML start tags may contain feature sets, just as is possible for p-
attributes. For instance, the German chunk parser YAC14 uses this notation to represent partially
disambiguated morphological features of NPs and PPs (see the CQP Query Language Manual
for more information and examples). XML tags of the form

<np agr="|Nom:F:Sg|Acc:F:Sg|" head="Wiese">

might be encoded with the declaration -S np:2+agr/+head, where the slash / indicates that agr
values are feature sets. Since head is not followed by a slash, the corresponding values are not
treated as feature sets.

8 Decoding and analysing corpora

The cwb-lexdecode tool provides access to the lexicon of positional attributes, i.e. lists of all word
forms or annotation strings (types) with their corpus frequencies. The -S option prints the size of corpus
(tokens) and lexicon (types) only, -P selects the desired p-attribute, -f shows corpus frequencies, and
-s lists the lexicon entries alphabetically (according to the internal sort order). In order to sort the
lexicon by frequency, an external program (e.g. sort) has to be used.

$ cwb-lexdecode -S -P lemma VSS

$ cwb-lexdecode -f -s -P lemma VSS | tail -20

$ cwb-lexdecode -f -P lemma VSS | sort -nr -k 1 | head -20

It is also possible to annotate strings from a �le (called tags.txt here) with corpus frequencies. The �le
must be in one-word-per-line format. -0 (digit zero) prints a frequency of 0 for unknown strings rather
than issuing a warning message; it can be combined with -f to the mnemonic form -f0.

$ cwb-lexdecode -f0 -P pos -F tags.txt VSS

With the -p option, word forms or annotations matching a regular expression can be extracted. Case-
insensitive and accent-insensitive matching is selected with -c and -d, respectively. The example below
is similar to the CQP query [lemma = "over.+" %c]; but may be considerably faster on a large corpus.

$ cwb-lexdecode -f -P lemma -p "over.+" -c VSS

An entire corpus or selected attributes from a corpus can be printed in various formats with the
cwb-decode tool. Note that options and switches must appear before the corpus name, and the �ags
used to select attributes after the corpus name. Use -P to select p-attributes and -S for s-attributes.
With the -s and -e options, a part of the corpus (identi�ed by start and end corpus position) can be
printed.

$ cwb-decode -C -s 7299 -e 7303 VSS -P word -P pos -S s

-C refers to the compact one-word-per-line format expected by cwb-encode. For a full textual copy of
a CWB corpus, use -ALL to select all positional and structural attributes.

$ cwb-decode -C VSS -ALL > vss-corpus.vrt

14See Kermes and Evert (2002): https://www.aclweb.org/anthology/L02-1202/

© 2005�2022 Stephanie Evert & The CWB Development Team 13

https://www.aclweb.org/anthology/L02-1202/

CWB Encoding Manual 8 DECODING AND ANALYSING CORPORA

The resulting �le vss-corpus.vrt can be re-encoded with cwb-encode (using appropriate �ags) to give an
exact copy of the VSS corpus. -Cx is almost identical to the compact format, but changes some details
in order to generate a well-formed XML document (unless there are overlapping regions or s-attributes
with �simple� annotations).15

$ cwb-decode -Cx VSS -ALL > vss-corpus.xml

This output format can reliably be re-encoded if the -xsB options are used (see section 5).

As of CWB v3.4.33, the opposite round-trip is also supported, i.e. it is possible to reconstruct a .vrt

input �le almost exactly. To this end, nested XML regions and attribute-value pairs in start tags,
which have been broken up into separate s-attributes by cwb-encode as described in Sec. 5, need to
be recombined by giving corresponding -S speci�cations to cwb-decode.

� Reconstruct the �le vss.vrt (Fig. 3) from the CWB corpus VSS indexed in Sec. 5:16

$ cwb-decode -C VSS -P word -P pos -P lemma

-S s -S p -S story+num+title > vss_decoded.vrt

� Also decode the nested NP and PP elements added in Sec. 7 with these additional declarations:

$ cwb-decode -C VSS -P word -P pos -P lemma

-S s -S p -S story+num+title -S np:2+head -S pp:2+head

> vss_decoded.vrt

Finally, -X produces a native XML output format (following a �xed DTD), which can be post-processed
and formatted with XSLT stylesheets.

$ cwb-decode -X -s 7299 -e 7303 VSS -P word -P pos -S s -S np_head

Note that the regions of s-attributes are not translated into XML regions. Instead, the start and end
tags are represented by special empty <tag> elements.

As of CWB v3.4.28, the cwb-encode and cwb-decode utilities provide improved support for reading
and writing CoNLL-style formats; see section 2 for details and limitations. Section 3 covers how
to index CoNLL �les. Such a corpus can easily be decoded back into CoNLL format, with the option
-b s adding a blank line after each sentence region:

$ cwb-decode -C -b s CONLL_CORPUS -P id -P word -P pos ...

If token numbers haven't been indexed explicitly, use numbered output mode (-Cn) to insert corpus
positions as placeholders in the �rst output column:

$ cwb-decode -Cn CONLL_CORPUS -P word -P pos ...

An alternative strategy is to extract all sentence regions and decode them in �matchlist mode�, which
automatically adds blank lines as delimiters. In this approach, comment lines with metadata informa-
tion can be added at the start of each sentence using -V �ags:

15In order to re-create the original input �le vss.vrt as a well-formed XML document, it would have been necessary
to store the full strings of attribute-value pairs from XML start tags by using -V �ags instead of -S in the cwb-encode

attribute declarations (e.g. -V story:0+num+title). In the cwb-decode call, problematic s-attributes created by auto-
splitting of these attribute-value pairs (story_num, story_title, s_len, np_head, . . .) can then be omitted. The
speci�cation -S story would print the full attribute-value pairs in <story> tags, etc.

16There will be a few small di�erences due to escaping of XML metacharacters and the omitted collection attribute.

© 2005�2022 Stephanie Evert & The CWB Development Team 14

CWB Encoding Manual 8 DECODING AND ANALYSING CORPORA

$ cwb-s-decode CONLL_CORPUS -S s |

cwb-decode -Cn -p CONLL_CORPUS -P word -P pos ... -V text_id -V s_num

It is then also possible to decode a subset of the sentences, by running a suitable CQP query (with
expand to s) and dumping the corresponding corpus positions. See man cwb-decode for examples.

cwb-scan-corpus computes combinatorial frequency tables for an encoded corpus. Similar to
the group command in CQP, it is a faster and more memory-e�cient alternative for the extraction
of simple structures from large corpora, and is not restricted to singletons and pairs. The output
of cwb-scan-corpus is an unordered list of n-tuples and their frequencies, which have to be post-
processed and sorted with external tools. The simple example below prints the twenty most frequent
(lemma, pos) pairs in the VSS corpus, using the -C option to �lter punctuation and noise from the list
of lemmata (note that -C applies to all selected attributes). 17

$ cwb-scan-corpus -C VSS lemma pos | sort -nr -k 1 | head -20

A non-negative o�set can be added to each �eld key in order to collect bigrams, trigrams, etc. The
following example derives a simple language model in the form of all sequences of three consecutive
part-of-speech tags together with their occurrence counts. Only the twenty most frequent sequences
are displayed.

$ cwb-scan-corpus VSS pos+0 pos+1 pos+2 | sort -nr -k 1 | head -20

For a large corpus such as the BNC, the scan results can directly be written to a �le with the -o switch.
If the �lename ends in .gz, .bz2 or .xz (such as the �le language-model.gz in the example below), the
output �le is automatically compressed (subject to the caveats discussed in Sec. 2).

$ cwb-scan-corpus -o language-model.gz BNC pos+0 pos+1 pos+2

The values of the selected p-attributes can also be �ltered with regular expressions. The following
command identi�es part-of-speech sequences at the end of sentences (indicated by the tag SENT =
sentence-ending punctuation).

$ cwb-scan-corpus VSS pos+0 pos+1 pos+2=/SENT/ | sort -nr -k 1 | head -20

Since the third key is used only for �ltering, we can suppress it in the output by marking it as a
constraint key with the ? character.

$ cwb-scan-corpus VSS pos+0 pos+1 ?pos+2=/SENT/ | sort -nr -k 1 | head -20

cwb-scan-corpus can operate both on p-attributes and on s-attributes with annotated values. For
instance, to obtain by-story frequency lists for the VSS corpus, use the following command:

$ cwb-scan-corpus -o freq-by-story.tbl VSS lemma+0 story_title+0

As a special case, s-attributes without annotated values can be used to restrict the corpus scan to
regions of a particular type. For instance, the constraint key ?footnote would only scan <footnote>

regions. Keep in mind that such special constraints must not include a regular expression part.

The �nal example extracts pairs of adjacent adjectives and nouns from the VSS corpus, e.g. as candidate
data for adjective-noun collocations. Constraint keys are used to identify adjectives and nouns, and
only nouns starting with a vowel are accepted here. Note the c and d modi�ers (case- and diacritic-
insensitive matching) on this regular expression. It is recommended to put all keys with non-trivial
constraints in single quotes in order to avoid misinterpretation of shell metacharacters.

17Windows users be aware: the data in this command, and some of the subsequent examples, is piped via the Unix
tools sort and head. On Windows a more typical approach would be to redirect the output to �le and then use some
GUI program (e.g. Notepad++, Microsoft Excel, etc.) to open the �le and manipulate the data.

© 2005�2022 Stephanie Evert & The CWB Development Team 15

CWB Encoding Manual 9 SENTENCE ALIGNMENT

$ cwb-scan-corpus -C VSS lemma+0 '?pos+0=/JJ.*/'

'lemma+1=/[aeiou].+/cd' '?pos+1=/NN.*/'

Except for the -C option, this command line is equivalent to the following CQP commands, but it will
execute much faster on a large corpus.

> A = [pos = "JJ.*"] [pos = "NN.*" & lemma = "[aeiou].+" %cd];

> group A matchend lemma by match lemma;

The cwb-scan-corpus command is limited to relatively simple constraints on tokens, and it can only
match patterns with �xed o�sets (but not e.g. determiner and noun separated by an arbitrary number
of adjectives). To obtain frequency tables for more complex patterns, use CQP queries in combination
with the tabulate function. The resulting data tables can be saved to disk and loaded into a relational
database or processed with some other software package for statistical analysis.

As of CWB v3.4.26, n-grams can be restricted with the -w option to be contained in a single region of
a speci�ed s-attribute, similar to the within constraint of a CQP query. List the most frequent POS
trigrams inside noun phrases with

$ cwb-scan-corpus -f 10 -w np VSS pos+0 pos+1 pos+2 | sort -nr

(Note that a hidden constraint key is added so that the scan will skip e�ciently from the end of one
region to the start of the next.)

Only a single -w constraint can be speci�ed, but normal existence constraints can be used to restrict
the scan further, e.g. to NPs within a PP:

$ cwb-scan-corpus -f 10 -w np VSS pos+0 pos+1 pos+2 ?pp+0 | sort -nr

This will only work correctly if the -w regions are fully contained in the regions tested with existence
constrains.

It is also possible to compute document frequencies based on an arbitrary s-attribute, using the -d
option. This command will list all lemmas that occur in all six stories of the VSS collection:

$ cwb-scan-corpus -f 6 -d story VSS lemma+0

The -d option automatically enforces a corresponding -w constraint. It cannot be combined with
an explicit -w option (i.e. -d story -w story is invalid), nor with the -F option for summing over
pre-computed frequency counts.

9 Sentence alignment

An alignment between two parallel corpora (e.g. a collection of source texts and their translations into
some other language) can be encoded as a corpus attribute within CWB.

� Alignment attributes (a-attributes) are unlike other types of attribute because alignment presup-

poses the existence of the source and target corpora. That is, �rst we need to encode the two
corpora independently; then we can add the alignment attribute that links them.

� Alignment attributes are usually employed for sentence alignment, and we will assume throughout
that it is sentences that we are aligning.

© 2005�2022 Stephanie Evert & The CWB Development Team 16

CWB Encoding Manual 9 SENTENCE ALIGNMENT

� However, you can also align at some other level (e.g. clauses or paragraphs or chapters). Aligning
regions that are much smaller than a sentence will not be very useful because of the limitations
of how CQP deals with a-attributes.

� Only one a-attribute linking any particular pair of corpora can exist.

� There are two ways that a pair of corpora can be aligned.

� First, the cwb-align tool can be used to automatically align the sentences of the two corpora,
with its output subsequently encoded as an a-attribute using cwb-align-encode.

� Second, an existing alignment scheme encoded in the corpus markup can be imported as an
a-attribute using cwb-align-import.

CWB supports many types of alignment link: one to one, many to many, and crossing. However, the
regions in the corpora that are the units to be aligned with one another cannot be discontinuous.

9.1 The example corpora

First, let's introduce the tutorial data we'll be working with. All the �les mentioned here are available
as part of the data package provided alongside the CWB Encoding Manual. The corpus we'll use
to practice alignment consists of a very short excerpt from the novel The Hound of the Baskervilles

by Arthur Conan Doyle, which we'll call the Holmes corpus after the main character. As well as the
original English, we have a German translation of the same text. We'll use the CWB labels HOLMES-EN
for the source corpus and HOLMES-DE for the target corpus (i.e. the translation) respectively. Using
language codes to distinguish components of a parallel corpus in this way is a useful way to organise
labels for aligned corpora in CWB.

Before going any further, you should index these two corpora, using the following commands:

$ cwb-encode -d /corpora/data/example -c utf8 -f holmes_en.vrt

-R /usr/local/share/cwb/registry/holmes-en

-P pos -P lemma -S s+id -S p+num

$ cwb-encode -d /corpora/data/example -c utf8 -f holmes_de.vrt

-R /usr/local/share/cwb/registry/holmes-de

-P pos -P lemma -S s+id -S p+num

(you should, of course, amend the -d and -R options to suit your own setup).

All the example commands given in the following sections are based on these two corpora. They do
not include the -r option to specify the registry directory location. If you have placed the registry
�les for the two corpora anywhere other than the default registry, you will need either to add the -r

option, or else to use the CWB_REGISTRY environment variable.

9.2 Using the sentence aligner

The cwb-align program is a very simple text aligner. It can be considered a �fallback� option for
sentence alignment, designed to provide basic functionality when nothing better is available. If your
corpus is already aligned, it is always better to use that existing alignment data. Similarly, if you have
a properly-designed and trained aligner for a given language pair, it is always better to use that than
to rely on cwb-align.

© 2005�2022 Stephanie Evert & The CWB Development Team 17

CWB Encoding Manual 9 SENTENCE ALIGNMENT

<p num="3">

<s id="a">

Mr. NP Mr.

Sherlock NP Sherlock

Holmes NP Holmes

[...]

was VBD be

seated VBN seat

at IN at

the DT the

breakfast NN breakfast

table NN table

. SENT .

</s>

<s id="b">

I PP I

[...]

stood VBD stand

upon IN upon

the DT the

hearth-rug NN hearth-rug

and CC and

picked VBD pick

up RP up

the DT the

stick VB stick

[...]

. SENT .

</s>

[... two more sentences ...]

</p>

Figure 6: Example from the source corpus (�le holmes_en.vrt), with abbreviations

In particular, cwb-align will not work well on languages that are unrelated to the extent of sharing
little or no vocabulary, as it works by looking for similarities in the words used in the two corpora it
analyses.

cwb-align makes use of very basic techniques to align units in two parallel corpora by spotting those
units - assumed to be of about sentence length - that have similar content. It looks for similarities in
terms of:

� The length of each corpus segment, measured in characters.
� The presence of shared words across the two corpora (ignoring case and accents).
� The presence of shared letter sequences (for spotting similar but not identical words).
� The presense of words speci�ed as translation equivalents (a �le containing the list of word-pairs
must be provided to look for these kinds of similarity).

Here is how we might create an alignment from scratch and then encode it using the two HOLMES
corpora, assuming that the <s> elements are the units to be aligned.

The most basic use of cwb-align would be as follows:

© 2005�2022 Stephanie Evert & The CWB Development Team 18

CWB Encoding Manual 9 SENTENCE ALIGNMENT

<p num="3">

<s id="a">

Mr. NN Mr.

Sherlock NN Sherlock

Holmes NE Holmes

[...]

saÿ VVFIN sitzen

am APPRART an

Frühstückstisch NN Frühstückstisch

, $, ,

während KOUS während

ich PPER ich

auf APPR auf

dem ART die

Kaminvorleger NN Kaminvorleger

stand VVFIN stehen

und KON und

den ART die

Spazierstock NN Spazierstock

aufhob VVFIN aufheben

[...]

</s>

[... three more sentences ...]

</p>

Figure 7: Example from the target corpus (�le holmes_de.vrt), with abbreviations

$ cwb-align -o holmes.align HOLMES-EN HOLMES-DE s

This command has one option and three arguments. The -o option simply speci�es a �lename for the
output data. The �rst and second arguments are the labels of the source corpus and the target corpus
respectively. The third argument is the grid attribute, that is, the s-attribute used as the alignment
grid.

The output �le has �ve columns (see �gure 8). The �rst line is a header line with the names of the
aligned corpora and of the grid attribute. Each subsequent line speci�es a pair of aligned regions:

� The beginning of the region in the source corpus
� The end of the region in the source corpus
� The beginning of the region in the target corpus
� The end of the region in the target corpus
� The type of alignment: 1:1, 2:1, 1:2, 2:2, 1:0 or 0:1 indicating one-to-one, two-to-one, one-to-two
or two-to-two, one-to-zero (deletion) and zero-to-one (insertion), respectively

� A number indicating how sure the alignment engine is that this pair of regions really matches
(the �quality�).18

However, it is not normally necessary for a human being to read the �le. Usually it is used only as
input data for the next step (see below).

18More precisely, the quality score represents the weighted sum of features shared by the aligned regions. Therefore
long alignment beads will usually achieve higher scores than shorter beads.

© 2005�2022 Stephanie Evert & The CWB Development Team 19

CWB Encoding Manual 9 SENTENCE ALIGNMENT

HOLMES-EN s HOLMES-DE s

0 9 0 9 2:2 495

10 63 10 61 2:1 661

64 102 62 90 2:1 438

103 129 91 146 1:1 624

130 151 147 152 1:1 153

152 164 153 163 1:1 356

165 181 164 180 1:1 368

182 232 181 227 1:2 606

233 247 228 265 1:1 904

...

Figure 8: Output from the most basic use of the aligner

To check whether the aligner worked correctly, you can view this �le interactively using the cwb-align-show
program. The command to run this program is:

$ cwb-align-show holmes.align

(you can use the -w option for a wider display, if your terminal window is big enough).

Press Return to display the next alignment pair, h for other key commands, and q to exit the viewer.

If your parallel corpus is large, it may be advisable to compress the .align �le by specifying a �lename
with extension .gz, .bz2, or .xz. All CWB alignment tools handle such compressed �les transparently.

9.3 Advanced use of the aligner

It is possible to get improved results from cwb-align by making use of di�erent parts of the original
data, or by tweaking the con�guration of the weight it gives to di�erent kinds of comparison.

One tweak we can make is to the p-attribute used by the aligner to measure similarity. The following
command, for instance, will used the lemma attribute as the �text� of the corpora when comparing their
content:

$ cwb-align -P lemma -o holmes.align HOLMES-EN HOLMES-DE s

The di�erent p-attributes need to have the same name in both source and target corpora for this to
work.

There are various reasons why you might use an attribute other than the default word for the lexical
comparisons. You might choose to use the lemma attribute, for instance, if the two languages are
closely related but di�er in their in�ections (in which case the lemmata would be overall more similar
to one another, and thus easier to align, than the actual word-tokens). Alternatively, you might choose
to align using the lemma attribute if you had a bilingual lexicon available which contained lemmata.
cwb-align is able use such a lexicon if it is available: words which are identi�ed in the lexicon as
equivalent will then count as �similar� for alignment purposes even if they are formally nothing alike.

The format of a lexicon �le is shown in �gure 9. The aligner can be instructed to use it as follows:

$ cwb-align -P lemma -o holmes.align HOLMES-EN HOLMES-DE s -W:50:lex.txt

© 2005�2022 Stephanie Evert & The CWB Development Team 20

CWB Encoding Manual 9 SENTENCE ALIGNMENT

be sein

sit sitzen

stand stehen

Figure 9: A very short English-German bilingual lexicon �le, lex.txt

The -W option is an aligner con�guration �ag, so it goes after the names of the corpora and the grid
attribute - in contrast to the general options already discussed, which precede the names of the corpora.

When the -W �ag is used, you must specify two things: �rst the weight to be given to words that match
when aligning sentences, and then the name of the �le containing the pairs of equivalents. The weight
given in the example above, 50, is equal to the default weight given to an occurence of the exact same
word in both languages. This number is one of the parameters that you can change to try to improve
the alignment output; see also below. The second thing that must be speci�ed is, of course, the name
of the lexicon �le.

There are many other parameters that can be tweaked and it may be worth experimenting to see
what gives you the best results. We won't cover the details here. All are described in full in the
cwb-align manual �le (accessed by the command man cwb-align on Unix, provided as a separate �le
on Windows).

One thing worth noting, however, is that it is possible to use pre-alignment. �Pre-alignment� means
that some correspondances are known in advance. In a novel, for instance, there may be chapter
boundaries which match across translations, and we can say for certain that a sentence in chapter 1
in language A will not be aligned with a sentence in any other chapter than chapter 1 in language B.
This makes the aligner's task easier.

If the indexed corpora contain such pre-alignment information encoded as an s-attribute, then the
aligner can be instructed to use it.

In the HOLMES corpora there exist paragraphs (s-attribute p). Let us assume that these paragraphs are
pre-aligned: we know that a given paragraph in HOLMES-EN matches one and only one paragraph in
HOLMES-DE, and that these links are known; it is only the alignment of sentences within each paragraph
pair that needs to be found out.

In this case we can add either the -S or -V option to cwb-align.

If we specify paragraph pre-alignment with -S, then the aligner assumes that the source and target
corpora have the same number of paragraphs, and that the �rst paragraph in the source (HOLMES-EN)
corresponds to the �rst paragraph in the target (HOLMES-DE), the second to the second, and so on.
This would be done as follows:

$ cwb-align -S p -o holmes.align HOLMES-EN HOLMES-DE s

Alternatively we can use -V. In this case, paragraphs will not be matched up by order - rather, they
are matched up by the value of the s-attribute. Since the Holmes corpora have num as an annotation
on <p>, there is an s-attribute p_num which has values and can be used in this way. This is done as
follows:

$ cwb-align -V p_num -o holmes.align HOLMES-EN HOLMES-DE s

In this case, the order of the paragraphs does not matter: the aligner will always try to match sentences
in paragraph 3 in one corpus to sentences in paragraph 3 in the other corpus.

Using pre-alignment improves the output, because fewer possibilities have to be checked for the align-
ment of each sentence.

© 2005�2022 Stephanie Evert & The CWB Development Team 21

CWB Encoding Manual 9 SENTENCE ALIGNMENT

9.4 Encoding the aligner's output

An alignment attribute is added to an existing CWB corpus, which must be the source corpus of the
alignment (not the target). There are two steps in this process.

The �rst step is to declare the new alignment attribute in the source corpus's registry �le.

So, �nd the holmes-en �le in the registry directory, and edit it to add the following line:

ALIGNED holmes-de

(note the use of the lowercase spelling of the attribute name!)

This declares an a-attribute linking this corpus to the HOLMES-DE corpus. An a-attribute has the same
name as the target corpus.

If you've got the CWB/Perl tools installed, you can use the cwb-regedit to make this change, rather
than manually editing the registry. The command would in this case be as follows:

$ cwb-regedit HOLMES-EN :add :a holmes-de

Once the registry �le has been updated, the second and �nal step is to encode the alignment attribute:

$ cwb-align-encode -D holmes.align

(this command runs very fast and prints no output if everything has gone OK).

There is only one argument to cwb-align-encode: the name of the text �le containing the alignment
data. It is not necessary to name either of the corpora, because the holmes.align �le contains both
names.

It is, however, always necessary to state where you want the encoded �les to be placed. The recom-
mended way to do this is the method shown above: with the -D option. This puts the a-attribute's
data �les in the same directory used for the corpus's other attributes (as speci�ed in the registry �le).

Alternatively, you can specify a di�erent location with the -d option.

Once encoding is complete, it's safe to delete the holmes.align �le.

This procedure only creates an a-attribute in HOLMES-EN, linking it to HOLMES-DE. If you also want an
a-attribute in HOLMES-DE linking it to HOLMES-DE, you must repeat the procedure with the source and
target corpora switched.

You can either re-run the aligner, or re-use the same holmes.align �le in �reverse mode�. cwb-align-encode's
reverse mode switches the source and target corpora from what is speci�ed in the .align �le. This
only works, however, provided that there are no crossing beads in your alignment.

That is, �rst run

$ cwb-regedit HOLMES-DE :add :a holmes-en

and then add the a-attribute data to HOLMES-DE. Assuming that we are re-using the same holmes.align
�le for this step, as explained above, we need the -R option to engage reverse mode:

$ cwb-align-encode -D -R holmes.align

© 2005�2022 Stephanie Evert & The CWB Development Team 22

CWB Encoding Manual 9 SENTENCE ALIGNMENT

9.5 Importing a pre-existing alignment

What if your corpora have already been aligned, either manually or using a better aligner than
cwb-align? In this case, you can create an a-attribute by importing such existing alignment in-
formation with cwb-align-import.

cwb-align-import is not part of the main CWB core, but is instead one of the CWB/Perl tools.

The procedure to import an alignment from existing information is as follows.

First, you must encode your information into an alignment beads �le. An alignment bead is one
single point of alignment between the source and target corpora. An alignment beads �le is a �le
de�ning a series of beads, plus some header information.

The header line of a bead�le has four items, separated by tabs:

� The CQP ID of the source corpus

� The CQP ID of the target corpus

� The ID of s-attribute encoding the regions to be aligned (i.e. the �grid�, as explained above)

� A �key pattern�.

After that, every line contains a single alignment bead. This consists of one or more source corpus IDs,
then a tab, then one or more target corpus IDs. The IDs must follow the key pattern. Let's consider
each of these elements in further detail.

The key pattern speci�es how ID codes in the bead�le relate to ID codes for regions in your indexed
corpora. The ID codes in the bead�le must be unique across each of the corpora.

The most basic case is when we can directly use an indexed s-attribute that has annotation values.
For instance, let's assume that the grid attribute is s, and that in both corpora there is a subsidiary
s-attribute called s_id which contains codes that uniquely identify the sentences: s_s01,s_s02, s_s03
etc. in the source corpus, and t_s01,t_s02, t_s03 etc. in the target corpus. In that case, we can
simply use s_id on its own as the key pattern. That causes the IDs on the other lines of the bead�le
to be matched against the contents of s_id. To accomplish this, we specify the key pattern simply as
�id� within curly brackets.

Lines after the header must each contain a single alignment bead. A bead consists of two columns,
separated by a tab. Each column contains one or more space-separated IDs (in our example, from the
s_id attribute) associated with regions which are to be treated as aligned to one another. The IDs
in the �rst column relate to the source corpus, and the IDs in the second column relate to the target
corpus.

The overall bead�le for our hypothetical would then look something like this:

CORPUS-SL NAME-TL s {id}

s_s01 s_s02 t_s01

s_s03 t_s02

s_s04 t_s03 t_s04

(...)

This speci�es that:

� the sentences with ID codes s_s01 and s_s02 are equivalent to sentence t_s01

© 2005�2022 Stephanie Evert & The CWB Development Team 23

CWB Encoding Manual 9 SENTENCE ALIGNMENT

� the sentence with ID code s_s03 is equivalent to sentence t_s02

� the sentence with ID code s_s04 is equivalent to sentences t_s03 and t_s04

� ... and so on.

Such a bead�le can then be imported, creating the a-attribute, using the following command:

$ cwb-align-import -p beadfile.txt

The -p option, short for prune, should normally be used. It makes cwb-align-import ignore any beads
with one or more IDs that don't actually occur in the corpus. Without this option, cwb-align-import
will abort with an error message if it encounters any bad IDs.

It is not necessary to specify in the cwb-align-import command which corpora are being aligned,
because that information is on the header line of the bead�le. However, both corpora do need to exist
in the active corpus registry (however that is speci�ed).

In our bilingual Holmes corpus, things are a little more complicated. The sentences do have ID codes,
so there is an s-attribute called s_id. However, the values of this attribute are not unique. Each
paragraph re-uses the same ID codes, starting with a,then b, then c, and so on. So just �id� in the key
pattern will not work.

We can make the codes unique by combining s-attributes together. Each paragraph in Holmes is
numbered, in the s-attribute called p_num. Therefore, if we combine together the paragraph number
and the sentence ID, we will have unique identi�ers.

We do this by specifying both attributes in the key pattern, each within braces. We must specify
their names in full, as p_num and s_id, unlike the simple case (where id is automatically expanded to
s_id on the basis of the grid attribute). A key pattern can also contain constant elements around the
s-attributes enclosed in curly braces, to allow the IDs to be friendlier in appearance.

An actual bead�le for the Holmes corpora is provided as part of the data package. Its �lename is
holmes_en_de_align.txt, and its full format is shown in �gure 10). The key pattern in this bead�le
consists of a constant s followed by the two s-attributes, p_num and s_id. This means that the leading
�s� in each key in the rest of the �le will be ignored, and the remainder looked up against p_num and
s_id. The key s1a therefore matches paragraph 1, sentence a.

(For further examples of complex key patterns, see man cwb-align-import.)

The Holmes bead�le includes beads which express empty alignments, that is, correspondances between
a region in one corpus and nothing in the other corpus. Region s7a in the English corpus corresponds
to nothing in the German corpus; likewise region s9b in the German corpus corresponds to nothing in
the English corpus. These kinds of alignments aren't possible in a CWB a-attribute, and by default
will cause a fatal error. The �ag -e (�empty�) tells cwb-align-import to ignore these lines instead. So
we must use -e when importing holmes_en_de_align.txt. Fortunately, -e is automatically activated
by the -p �ag.

The overall command is thus:

$ cwb-align-import -p holmes_en_de_align.txt

Another �ag that is often useful is -i. This inverts the source corpus and target corpus from what is de-
clared in the bead�le. It means that you can create two a-attributes, one going each way, from the same
bead�le. So, since the command above creates an a-attribute in HOLMES-EN, pointing at HOLMES-DE,
for an a-attribute in HOLMES-DE, pointing at HOLMES-EN, you can use the following command:

$ cwb-align-import -i -p holmes_en_de_align.txt

© 2005�2022 Stephanie Evert & The CWB Development Team 24

CWB Encoding Manual A APPENDIX: REGISTRY FILE FORMAT

HOLMES-EN HOLMES-DE s s{p_num}{s_id}

s1a s1a

s2a s2a

s3a s3b s3a

s3c s3b

s3d s3e s3f s3c s3d

s4a s4a

s5a s5a

s5b s5b s5c

s6a s6a

s6b s6b

s6c s6c

s6d s6d

s6e s6f s6e

s6g s6f

s7a

s8a s8a

s9a s9b s9a

s9b

s9c s9c

... ...

Figure 10: Bead�le holmes_en_de_align.txt for the Holmes corpus pair

9.6 Importing alignment data from TMX format

Finally, an alignment data import tool recently added to CWB is cwb-align-tmx2beads. This is
part of the CWB/Perl package. Its purpose is to generate bead�les from corpus texts in the TMX
format. TMX is a fairly common XML-based system for storing alignment data that is very di�erent
to the CWB representation. cwb-align-tmx2beads is not fully documented here because it remains
experimental (as of version 3.5.0), but an explanation of its operation is contained within the POD
documentation sections of the Perl script itself.

The bead�le generated by cwb-align-tmx2beads can be used with cwb-align-import as described in
the previous section.

A Appendix: Registry �le format

The following is a sample registry �le created by cwb-encode. The cwb-regedit also creates registry
�les in this format.

##

registry entry for corpus BNCSAMPLER

##

long descriptive name for the corpus

NAME ""

corpus ID (must be lowercase in registry!)

ID bncsampler

path to binary data files

© 2005�2022 Stephanie Evert & The CWB Development Team 25

CWB Encoding Manual B APPENDIX: LIMITS

HOME /home/Corpora/data/bncsampler

optional info file (displayed by "info;" command in CQP)

INFO /home/Corpora//bncsampler/.info

corpus properties provide additional information about the corpus:

##:: charset = "utf8" # change if your corpus uses different charset

##:: language = "??" # insert ISO code for language (de, en, fr, ...)

##

p-attributes (token annotations)

##

ATTRIBUTE word

ATTRIBUTE pos

ATTRIBUTE hw

ATTRIBUTE semtag

ATTRIBUTE class

ATTRIBUTE lemma

##

s-attributes (structural markup)

##

<text id=".."> ... </text>

(no recursive embedding allowed)

STRUCTURE text

STRUCTURE text_id # [annotations]

<s> ... </s>

STRUCTURE s

Yours sincerely, the Encode tool.

CWB traditionally had a more �exible registry �le format (which is still accepted for backward com-
patibility), which could contain a variety of other declarations. The standard format for new corpora,
however, is as given above; we recommend that you stick to this format, since it is in fact enforced by
the CWB/Perl scripts.

Finally, it is worth noting that directory and �le paths in HOME and INFO entries have to be double-
quoted if they contain blanks or other non-standard characters (ASCII letters, digits, -, _, / and .

are ok, as long as the path does not begin with .). In a double-quoted path, " must be escaped as \"
and the backslash \ as \\. If you use cwb-encode and cwb-regedit, they should always create valid
entries, with quotes added when necessary.

B Appendix: Limits

This section documents some technical limits of CWB. Most of these are due to the design of the index
�le format (notably the pervasive use of signed 32-bit integer values), but some additional restrictions

© 2005�2022 Stephanie Evert & The CWB Development Team 26

CWB Encoding Manual C APPENDIX: MAGIC COMPRESSION AND DECOMPRESSION

are imposed by implementation decisions.

� The maximum corpus size is 2,147,483,647 tokens (the largest value that can be stored as a signed
32-bit integer). In the CWB source code, this is represented by the macro CL_MAX_CORPUS_SIZE.

� The maximum size of a p-attribute lexicon is 2,147,483,647 bytes (or 2 GiB), due to the use of
signed 32-bit integer o�sets into the .lexicon �le.19

� The same 2 GiB limit applies to the �lexicon� storing all distinct annotation strings of an s-
attribute with values (the .avs �le).

� The maximum length of an annotation string is 4096 bytes, including the NUL terminator. In
UTF-8 encoding, a single character may occupy two or more bytes, so the maximum character

length of an annotation string may be smaller.

The length limit is determined by the macro CL_MAX_LINE_LENGTH in the CWB source code and
can be increased if absolutely necessary. This is strongly discouraged, as it may create index �les
that are not compatible with standard builds of CWB.

� The maximum length of a �lename is determined by the macro CL_MAX_FILENAME_LENGTH in the
CWB source code. Its default value is currently 1024 bytes.

� The maximum length of an input line in the .vrt format is currently 65,536 bytes. It is deter-
mined by the macro MAX_INPUT_LINE_LENGTH in the cwb-encode source code.

C Appendix: Magic compression and decompression

The use of automagic20 decompression of input �les or compression of output �les has been mentioned
throughout. This appendix brings together this information in one place.

This behaviour applies to CQP as well as the various CWB utilities discussed in this manual.

� When an input �le is speci�ed, CWB reads it di�erently depending on its �le extension.

� If a �lename ends in .gz, it is assumed to be compressed in the gzip format.

� If a �lename ends in .bz2, it is assumed to be compressed in the bzip2 format.

� If a �lename ends in .xz, it is assumed to be compressed in the xz format.

Single-�le archives only are supported. That is, a �le some�le.vrt can be read by CWB if it is com-
pressed to some�le.vrt.gz, but not if it is placed in the compressed archive some�les.tar.gz.

Automagic decompression require the appropriate program to be installed and �ndable by CWB, that
is, they must be in one of the directories named in the PATH environment variable. However, if for
whatever reason your binaries for gzip/bzip2/xz are not in a standard location, and you either can't
or don't want to modify your PATH variable, another solution is possible:

� Set the environment variable CWB_COMPRESSOR_PATH to the folder that contains the programs in
question.

� Only one folder may be speci�ed, so all three need to be in the same place.

19Lexicon size refers to the sum of the byte lengths of all annotation strings in the lexicon, including NUL terminators.
20Automatic, as if by magic.

© 2005�2022 Stephanie Evert & The CWB Development Team 27

CWB Encoding Manual C APPENDIX: MAGIC COMPRESSION AND DECOMPRESSION

� If one of them isn't, you can add a (hard or symbolic) link for the missing program from the
folder named in CWB_COMPRESSOR_PATH to the program in its actual location.

� Make the CWB_COMPRESSOR_PATH environment variable available to your programs. Depending
on your shell, there will be di�erent ways to do this; one common one is to set the environment
variable prior to the invocation of the program:

$ CWB_COMPRESSOR_PATH=/path/to/zipping/programs/ cwb-encode [...]

but others exist.

This will make automagic decompression work as expected.

While gzip, bzip2, and xz are standard or widely-available utilities on most Unix-like operating
systems, they are not easily available everywhere, and especially on Windows may be very hard to
install. In this case, an alternative is to use 7-zip.

7-zip is a free/open-source tool which can handle all three of the supported formats. It is easily
installed on Windows (from https://www.7-zip.org/), and a package with ports of the non-GUI
7-zip executables is available for Unix-like systems as well: p7zip, installable via package managers or
from http://p7zip.sourceforge.net/).

If you wish to use 7-zip you must, again, make sure that the directory containing its executable (7z,
or 7z.exe on Windows) is on your PATH, or else use CWB_COMPRESSOR_PATH to specify its location.

You must then set the environment variable CWB_USE_7Z (normally to 1) to signal to CWB that it
should use 7z rather than the other programs. Your command might then be:

$ CWB_USE_7Z=1 CWB_COMPRESSOR_PATH=/path/to/7zip/programs/ cwb-encode [...]

The latest developments to automagic compression:

� CWB_COMPRESSOR_PATH is available in CWB v3.4.37+

� CWB_USE_7Z is available in CWB v3.4.35+

© 2005�2022 Stephanie Evert & The CWB Development Team 28

https://www.7-zip.org/
http://p7zip.sourceforge.net/

	Prerequisites
	First steps: Encoding and indexing
	Input format extensions
	Indexing and compression without CWB/Perl
	CWB corpora and XML
	Adding attributes to an encoded corpus
	Adding XML annotations
	Decoding and analysing corpora
	Sentence alignment
	The example corpora
	Using the sentence aligner
	Advanced use of the aligner
	Encoding the aligner's output
	Importing a pre-existing alignment
	Importing alignment data from TMX format

	Appendix: Registry file format
	Appendix: Limits
	Appendix: Magic compression and decompression

